K. Shikishima-Tsuji and M. Katsura Nagoya Math. J. Vol. 125 (1992), 93-103

## A FORMAL POWER-SERIES RING OF POSITIVE CHARACTERISTIC

## KAYOKO SHIKISHIMA-TSUJI AND MASASHI KATSURA

## § 0. Introduction

Throughout this paper, we denote by N, Q and R the set of all natural numbers containing 0, the set of all rational numbers, and the set of all real numbers, respectively.

Let K be a fixed field of positive characteristic p and  $K_a$  an algebraic closure of K. We denote by K[X] the formal power-series ring and by  $d = (d_\mu; \mu \in \mathbb{N})$  the formal derivation of K[X], i.e., for every  $A = \sum_{i=0}^{\infty} a_i X^i \in K[X]$ , the  $\mu$ -th derivative  $d_\mu A$  of A is defined by

$$d_{\scriptscriptstyle{\mu}} A = \sum_{i=\mu}^{\infty} inom{i}{\mu} a_i X^{i-\mu}$$
 .

For differential rings and differential fields of positive characteristic, see Okugawa [4].

This paper contains three theorems. Let A be an element  $\sum_{i=0}^{\infty} a_i X^i$  of K[X]. We say that A is hypertranscendental over K, if, for every  $\mu \in \mathbb{N}$ , A,  $d_1A$ , ...,  $d_{\mu}A$  are algebraically independent over K(X). When the characteristic of the field is zero, the existence of hypertranscendental elements is well-known (see D. Hilbert [1], O. Hölder [2], F. Kuiper [3]). Theorem 1 shows the existence of hypertranscendental elements in case of positive characteristic.

Let L be a differential field and S a subset of a differential extension field of L. We say that S is differentially independent over L or all the elements of S are differentially independent over L, if for every  $\mu \in \mathbb{N}$  and elements  $s_1, \dots, s_{\mu}$  of S, there are no nonzero differential polynomial  $F(X_1, \dots, X_{\mu}) \in L\{X_1, \dots, X_{\mu}\}$  such that  $F(s_1, \dots, s_{\mu}) = 0$ .

Theorem 2 states that there are infinitely many hypertranscendental

Received February 21, 1991.