H. P. Fujita Nagoya Math. J. Vol. 124 (1991), 145-155

MANSFIELD AND SOLOVAY TYPE RESULTS ON COVERING PLANE SETS BY LINES

HIROSHI P. FUJITA

F. van Engelen, K. Kunen, and A. W. Miller proved, in [EKM], that for every analytic (Σ_1^1) set A on the plane, either A can be covered by a countable family of lines or else there is a perfect subset P of A such that no three points of P are collinear. In this paper, we present some generalizations of their result. In particular, a question which was raised by van Engelen et al. in the last paragraph of [EKM] is answered (see Section 3).

We first consider generalizations to κ -Suslin sets and Σ_2^1 sets on the plane (Section 1). A lightface refinement of the result of van Engelen et al. is also examined (Section 2).

§1. Covering a Suslin set

In this section, we prove the following theorem, which is a direct generalization of the theorem of van Engelen et al.

THEOREM 1. Let $A \subseteq \mathbb{R}^2$ be a κ -Suslin set and let T° be the tree associated to a κ -semiscale on A. Then either A can be covered by an $L[T^\circ]$ -definable family of lines with size at most κ , or else there is a perfect subset of A with no three collinear points.

See Chapter 2 of [Mo] for definitions of " κ -Suslin", " κ -semiscale," etc. We may view Baire's space " ω of irrationals as a subset of the plane \mathbb{R}^2 since " ω is homeomorphic to the set of points in \mathbb{R}^2 with irrational coordinates. So, $\mathbb{R}^2 - \omega$ is the union of an arithmetically definable family of countably many lines.

For a given κ -Suslin set A, let T° be the tree on $\omega \times \kappa$ associated to a κ -semiscale on A. We may suppose, without loss of generality, that $A \subseteq {}^{*}\omega$ and A is the projection of T° where the projection p[T] of a tree

Received January 8, 1991.