M. Nisio Nagoya Math. J. Vol. 123 (1991), 13-37

OPTIMAL CONTROL FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND VISCOSITY SOLUTIONS OF BELLMAN EQUATIONS

MAKIKO NISIO

§1. Introduction

Recently M. G. Crandall and P. L. Lions developed the viscosity theory on nonlinear equations in infinite dimensions and optimal control in Hilbert spaces, in two series of papers, [1], [4].

In this article we will study of optimal control of stochastic partial differential equations and viscosity solutions of Bellman equation (1.1) below,

(1.1)
$$\sup_{u}\left(-\frac{1}{2}(D^{2}\nu(\phi)M\phi,M\phi)-(D\nu(\phi),L(u)\phi)+\lambda\nu(\phi)-F(\phi)\right)=0,$$

where D and D^2 denote the first and second Fréchet differentials and M and L(u) are the first and second order differential operators respectively (see (2.1)).

Let us consider the following stochastic partial differential equation, (SPDE in short)

(1.2)
$$dq(t) = \sum_{i,j=0}^{d} \frac{\partial}{\partial x_{i}} \left(a^{ij}(x, U(t)) \frac{\partial}{\partial x_{j}} q(t, x) + f^{i}(x, U(t)) \right) dt \\ + \sum_{k=1}^{m} \left(\sum_{i=0}^{d} b^{i}_{k}(x) \frac{\partial}{\partial x_{i}} q(t, x) + g_{k}(x) \right) dW^{k}(t) ,$$

where $W = (W^1, \dots, W^m)$ is an *m*-dimensional standard Wiener process and U(t) an admissible control. We will define the criterion J by

(1.3)
$$J(\phi, U) = E \int_0^\infty e^{-\lambda t} F(q(t, \phi, U)) dt$$

where $q(t, \phi, U)$ denotes a solution of (1.2) starting at ϕ . The function V defined by

Received March 15, 1990.