M. Kanda Nagoya Math. J. Vol. 122 (1991), 63-74

NOTES ON ENERGY FOR SPACE-TIME PROCESSES OVER LÉVY PROCESSES

MAMORU KANDA

Dedicated to Professor Masanori Kishi on his 60th birthday

§1. Introduction

Let $X = (X_t, 0 \le t < \infty)$ be a Lévy process on the Euclidean space \mathbb{R}^d , that is, a process on \mathbb{R}^d with stationary independent increments which has right continuous paths with left limits. We denote by P^x the probability measure such that $P^x(X_0 = x) = 1$ and by \mathbb{E}^x the expectation relative to P^x . The process is characterized by the exponent \mathcal{V} through

$$E^{\mathrm{o}}(\exp i\langle z, X_t
angle) = \exp(-tar arphi(z))$$
 .

The λ -energy $E_X^{\lambda}(\nu)$ of a measure ν on R^d for X is defined by

$$E^{\scriptscriptstyle \lambda}_{\scriptscriptstyle X}(
u) = \int \operatorname{Re}([\lambda+\varPsi(z)]^{\scriptscriptstyle -1})|\mathscr{F}
u(z)|^2 dz\,,$$

where \mathscr{F} denotes the Fourier tranform on \mathbb{R}^d . A nice explanation of the reason why it is called the λ -energy is given in Rao [11]. Throughout the paper $\mathscr{F}_{\nu}(z)$ is defined by $\int \exp i \langle z, x \rangle \nu(dx)$ and we write $\mathscr{F}_{u}(z)$ in place of $\mathscr{F}_{u}dx(z)$ if $\nu(dx) = u(x)dx$. So our λ -energy differs from Rao's by a constant multiple.

The space-time process $Y = (Y_t, 0 \le t < \infty)$ over X is a Lévy process on $\mathbb{R}^1 \times \mathbb{R}^d$ defined on the probability space $(\mathbb{R}^1 \times \Omega, \mathbb{P}^{r,x})$, where Ω is the path space of X and $\mathbb{P}^{r,x} = \delta_r \otimes \mathbb{P}^x$, δ_r being the Dirac measure at $r \in \mathbb{R}^1$. The trajectory $Y_t(r, \omega)$ is $(r + t, X_t(\omega))$ and the exponent of Y is $\Psi(z) - it$. So the λ -energy $\mathbb{E}^1_Y(\mu)$ of a measure μ on $\mathbb{R}^1 \times \mathbb{R}^d$ for Y is

$$E_Y^{\lambda}(\mu) = \iint \operatorname{Re}([\lambda + \Psi(z) - it]^{-1}) |\mathscr{F}\mu(t, z)|^2 dt dz$$

where \mathscr{F} denotes the Fourier transform on $R^1 \times R^d$.

Received January 10, 1990.