T. Watanabe Nagoya Math. J. Vol. 121 (1991), 195-199

ON THE STRONG UNIMODALITY OF LÉVY PROCESSES

TOSHIRO WATANABE

§1. Introduction and results

A measure $\mu(dx)$ on R is said to be unimodal with mode a if $\mu(dx)$ $= c\delta_a(dx) + f(x)dx$, where $c \ge 0$, $\delta_a(dx)$ is the delta measure at a and f(x)is non-decreasing for x < a and non-increasing for x > a. A measure $\mu(dx) = \sum_{n=-\infty}^{\infty} p_n \delta_n(dx)$ on $Z = \{0, \pm 1, \pm 2, \cdots\}$ is said to be unimodal with mode a if p_n is non-decreasing for $n \leq a$ and non-increasing for $n \geq a$. A probability measure $\mu(dx)$ on R (resp. on Z) is said to be strongly unimodal on R (resp. on Z) if, for every unimodal probability measure $\eta(dx)$ on R (resp. on Z), the convolution $\mu * \eta(dx)$ is unimodal on R (resp. on Z). Let X_t , $t \in [0, \infty)$, be a Lévy process (that is, a process with stationary independent increments starting at the origin) on R(resp. on Z) with the Lévy measure $\nu(dx)$. The process X_t is said to be unimodal on R (resp. on Z) if, for every t > 0, the distribution of X_t is unimodal on R (resp. on Z). It is said to be strongly unimodal on R(resp. on Z) if, for every t > 0, the distribution of X_t is strongly unimodal on R (resp. on Z). In this paper we shall characterize strongly unimodal Lévy processes on R and Z.

THEOREM 1. Let X_t be a Lévy process on R. Then X_t is strongly unimodal on R if and only if

$$X_t = \sigma B(t) + \gamma t \,,$$

where B(t) is a Brownian motion and σ and γ are constants, $\sigma \geq 0$.

THEOREM 2. Let X_t be a Lévy process on Z. Then X_t is strongly unimodal on Z if and only if

$$X_t = X_{at}^{(1)} - X_{bt}^{(2)},$$

Received June 25, 1990.