ON THE TOPOLOGY OF FULL NON-DEGENERATE COMPLETE INTERSECTION VARIETY

MUTSUO OKA

§ 1. Introduction

Let $h_1(\mathbf{u}), \dots, h_k(\mathbf{u})$ be Laurent polynomials of m-variables and let

$$Z^* = \{\mathbf{u} \in \mathbf{C}^{*m}; h_1(\mathbf{u}) = \cdots = h_k(\mathbf{u}) = 0\}$$

be a non-degenerate complete intersection variety. Such an intersection variety appears as an exceptional divisor of a resolution of non-degenerate complete intersection varieties with an isolated singularity at the origin (Ok4]). We say that Z^* is full if $\dim(A(h_a)) = m$ for any $\alpha = 1, \dots, k$. Let I be a subset of $\{1, \dots, m\}$. We say that Z^* is I-full if (i) for each $\alpha = 1, \dots, k$, $h_a(\mathbf{u})$ is a polynomial in the variables $\{u_i; i \in I\}$ (fixing other variables) and (ii) for any $J \supset I^c$, the polynomials $\{h_a^J(\mathbf{u}_J); \alpha = 1, \dots, k\}$ are not constantly zero and the variety $\{\mathbf{u}^J \in \mathbf{C}^{*J}; h_I^J(\mathbf{u}_J) = \dots = h_k^J(\mathbf{u}_J) = 0\}$ is full in the above sense where h_a^J is the restriction of h_a to the coordinate subspace $\mathbf{C}^J = \{\mathbf{u} \in \mathbf{C}^m; u_i = 0 \text{ if } i \notin J\}$ and I^c is the complement of I in $\{1, \dots, m\}$. Thus any full non-degenerate complete intersection variety is \emptyset -full. Assume that Z^* is I-full and let

$$Z = \{\mathbf{u} \in \mathbf{C}^I \times \mathbf{C}^{*I^c}; \ h_i(\mathbf{u}) = \cdots = h_k(\mathbf{u}) = 0\}.$$

Here we identify $\mathbf{C}^I \times \mathbf{C}^{*I^c}$ with the subspace of \mathbf{C}^m by $\mathbf{C}^I \times \mathbf{C}^{*I^c} = \{\mathbf{z} \in \mathbf{C}^m; \ z_i \neq 0, \ i \in I^c\}$. In the case that $I = \{1, \cdots, m\}$, the *I*-fullness condition implies that each h_α has a non-zero constant term and each $h_\alpha(\mathbf{u})$ is a convenient polynomial. Here the polynomial h_α is called convenient if and only if $h_\alpha^{\{i\}}$ is not constantly zero for any $1 \leq i \leq m$. In particular, $\vec{0} \notin Z$ in this case. The purpose of this paper is to study the topology of a full non-degenerate complete intersection variety. We will prove

Received March 14, 1990.