X. Wang Nagoya Math. J. Vol. 121 (1991), 97-125

THE HECKE ALGEBRA ON THE COHOMOLOGY OF $\varGamma_{0}(p_{0})$

XIANGDONG WANG

§1. Introduction

Let p_0 be a prime, $p_0 > 3$ and $\Gamma_0(p_0)$, $\Gamma_1(p_0)$, as usual, the congruence subgroups of $\Gamma = PSL_2(\mathbb{Z})$.

$$egin{aligned} & \Gamma_{\mathfrak{g}}(p_{\mathfrak{g}}) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \Gamma \, \Big| \, c \equiv 0 egin{pmatrix} & 0 egin{pmatrix} & 0 egin{pmatrix} & p_{\mathfrak{g}} \end{bmatrix}, \ & \Gamma_{\mathfrak{g}}(p_{\mathfrak{g}}) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \Gamma_{\mathfrak{g}}(p_{\mathfrak{g}}) \, \Big| \, d \equiv 1 egin{pmatrix} & 1 egin{pmatrix} & 0 egin{pmatrix} & p_{\mathfrak{g}} \end{bmatrix}. \end{aligned}
ight\}. \end{aligned}$$

Denote

$$egin{aligned} & arLambda &= \left\{ r = egin{pmatrix} a & b \ c & d \end{pmatrix} \Big| a, b, c, d \in \mathbb{Z}, \ ext{gcd} \left(a, b, c, d
ight) &= 1, \ ext{det} \left(r
ight)
otin 0 \ ext{mod} \ p_0
ight\}, \ & \mathcal{A}_0 &= \left\{ r = egin{pmatrix} a & b \ c & d \end{pmatrix}
otin \mathcal{L} \left| c \equiv 0 \ ext{mod} \ p_0
ight\}, \ & \mathcal{A}_1 &= \left\{ r = egin{pmatrix} a & b \ c & d \end{pmatrix}
otin \mathcal{L} \left| d \equiv 1 \ ext{mod} \ p_0
ight\}, \end{aligned}$$

with $\Delta_1 \subset \Delta_0 \subset \Delta$ and $\Delta_0/\Delta_1 \cong (\mathbb{Z}/p_0)^*$. Let $R = \mathbb{Z}[\frac{1}{6}]$. We consider the following *R*-module $M_n = \{\sum_{v=0}^n a_v x^v y^{n-v} | a_v \in R\}$. The semigroup Δ acts on M_n via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} x^{v} y^{n-v} = (ax + cy)^{v} (bx + dy)^{n-v}.$$

Let $\eta: \Gamma_0(p_0)/\Gamma_1(p_0) \cong (\mathbb{Z}/p_0)^* \to R^*$ be the Legendre-symbol. We extend η to \mathcal{A}_0 such that η acts trivially on \mathcal{A}_1 , i.e. η is a character from $\mathcal{A}_0/\mathcal{A}_1$ to R^* . Denote by R_η the R-module of rank 1 with a \mathcal{A}_0 -operation given by $s_0.1 = \eta(s_0) \cdot 1, \ \forall s_0 \in \mathcal{A}_0$. Set $M_{n,\eta} = M_n \otimes R_\eta$. This is then a $R[\mathcal{A}_0]$ -module. The goal of the present paper is to investigate the Hecke algebra on the cohomology group $H^*(\Gamma_0(p_0), M_{n,\eta})$. Let $S_k(\Gamma_0(p_0), \eta)$, as usual, be the

Received February 26, 1990.