ON DEFECT RELATIONS OF MOVING HYPERPLANES

MANABU SHIROSAKI

§ 1. Introduction

The defect relation $\sum_{j=1}^{q} \delta(f, H_j) \leq n+1$ gives the best-possible estimate, where f is a linearly non-degenerate holomorphic curve in $P^n(C)$ and H_1, \dots, H_q are hyperplanes in $P^n(C)$ which are in general position. However, the case of moving hyperplanes has ever got only n(n+1) instead of n+1 (Stoll [4]) and it has not yet been known whether this bound is best-possible or not. In this paper we shall give some particular cases which have the bound n+1.

The author thanks Professor Fujimoto for his useful advice and discussions with the author.

§ 2. Holomorphic curves and moving hyperplanes

In this paper, we fix one homogeneous coordinate system of the *n*-dimensional complex projective space $P^n(C)$ and denote it by the notation $w = (w_0 : \cdots : w_n)$.

A hyperplane H in $P^n(C)$ is an (n-1)-dimensional projective subspace of $P^n(C)$, i.e., it is given by $H = \{w \in P^n(C) | \sum_{j=0}^n a_j w_j = 0\}$, where $(a_0, \dots, a_n) \in C^{n+1} - \{0\}$. We call the vector (a_0, \dots, a_n) a representation of H. Let H_j be hyperplanes in $P^n(C)$ with representations $a^j = (a_0^j, \dots, a_n^j)$ $(j = 1, \dots, q)$. If any min (q, n + 1) elements of a^1, \dots, a^q are linearly independent over C, H_1, \dots, H_q are said to be in general position.

We call a holomorphic mapping $f: C \to P^n(C)$ a holomorphic curve in $P^n(C)$. A representation of f is a holomorphic mapping $\tilde{f} = (f_0, \dots, f_n)$: $C \to C^{n+1}$ which satisfies $\tilde{f}^{-1}(0) \neq C$ and $f(z) = (f_0(z):\dots:f_n(z))$ for all $z \in C - \tilde{f}^{-1}(0)$. Then we write $f = (f_0:\dots:f_n)$. If $\tilde{f}^{-1}(0) = \emptyset$, then the representation \tilde{f} is said to be reduced.

DEFINITION 2.1. A moving hyperplane H^{M} in $P^{n}(C)$ is a mapping of Received December 15, 1989.

103