M. Szurek and J. A. Wiśniewski Nagoya Math. J. Vol. 120 (1990), 89-101

ON FANO MANIFOLDS, WHICH ARE P^{κ} -BUNDLES OVER P^{2}

MICHAŁ SZUREK AND JAROSŁAW A. WIŚNIEWSKI

In our earlier paper [8] we discussed Fano manifolds X that are of the form $X = \mathbb{P}(\mathscr{E})$ with a rank-2 vector bundle \mathscr{E} on a surface S. Here we study a more general situation of Fano manifolds, ruled over the complex projective plane P^2 as P^{r-1} -bundles, i.e., being of the form $\mathbb{P}(\mathscr{E})$ with \mathscr{E} -a bundle of rank $r \geq 3$ on P^2 . We say that \mathscr{E} is a Fano bundle if $\mathbb{P}(\mathscr{E})$ is a Fano manifold.

THEOREM. All manifolds $X = \mathbb{P}(\mathcal{E})$ with \mathcal{E} a vector bundle of rank $r \geq 2$ over P^2 are listed below:

c_1	C_2	¢	$X = \mathbb{P}(\mathscr{E})$
0	0	\mathcal{O}^r	$P^2 imes P^{r-1}$
1	0	$\mathcal{O}(1) \oplus \mathcal{O}^{r-1}$	blow-up of P^{r+1} along P^{r-1}
1	1	$T(-1) \oplus \mathcal{O}^{r-2}$	a divisor of degree (1, 1) in $P^2 imes P^r$
2	0	$\mathcal{O}(2) \oplus r^{-1}$	blow-up of the cone in P^{r+4} over
			veronese $(P^2) \subset P^5$ along its vertex
			$(=P^{r-2})$
2	1	$\mathcal{O}(1)^2 \oplus \mathcal{O}^{r-2} \ (r \ge 3)$	blow-up of the cone in P^{r+3} over
			$P^1 \times P^2 \subset P^5$ along its vertex $(=P^{r-3})$
2	2	$r=2$: a bundle \mathscr{E}_2 in	blow-up of Q_{3} along a line;
		$0 \to \mathcal{O} \to \mathcal{E}_{2}(-1) \to \mathbf{J}_{x} \to 0$	
		$r \geq 3$: special: $\mathcal{O}^{r-1} \oplus \mathscr{E}_2$	blow-up of a cone over a smooth
		general: $T(-1) \oplus \mathcal{O}(1) \oplus \mathcal{O}^{r-3}$	quadric $oldsymbol{Q}_{3}$ (resp. $oldsymbol{Q}_{4}$) along a linear
			subspace P^{r-1} containing the vertex
			$\cong P^{r-3}$ (resp. P^{r-4})
2	3	All bundles fitting into	blow-up of P^3 along a twisted cubic
		$0 \to \mathcal{O} \to (-1)^2 \to \mathcal{O}^{r+2} \to \mathcal{E} \to 0$	curve, if $r = 2$
		$r = 3$: special $\mathscr{E}_3^s = \mathscr{O} \oplus \mathscr{E}_2$	blow-up of the cone over a twisted
			cubic curve in P^4 , i.e. the rational

Received January 13, 1989.

normal scroll S(0, 3)