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SUPER CONGRUENCE FOR THE APERY NUMBERS
TSUNEO ISHIKAWA

§0. Introduction
Let, for any n > 0,
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R. Apéry’s proof of the irrationality of &(2) and {(3) made use of
these numbers (see [10]). As a result, many properties of the Apéry

numbers were found (see [1]-[9]). In particular, Beukers and Stienstra
showed the interesting congruence (see [11, Theorem 13.1]).

THEOREM 1 (Beukers and Stienstra). Let p > 3 be a prime, and write
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Let m, re N, m odd, then we have
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Moreover they conjectured that congruence (2) holds mod p* if p > 5,
and they called these congruences super congruences in [4] and [11].
In this paper we shall prove the conjecture for r = 1.

THEOREM 2. Let p > 5 be a prime and m € N, m odd, then we have
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F. Beukers informed me that L. Van Hamme proved the case of p =
1 mod 4 using properties of the p-adic gamma function (see [7]). We prove
the general case involving p = 3 mod 4 by entirely different method. Our
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