H. Morikawa Nagoya Math. J. Vol. 113 (1989), 153-159

ON
$$\zeta_n$$
-WEYL ALGEBRA $W_r(\zeta_n, Z)$

HISASI MORIKAWA

0.

Weyl algebra is an associative algebra generated by two elements \hat{a} and a over **R** such that the generating relation is given by

$$\hat{a}a - a\hat{a} = 1$$
,

which is isomorphic to the algebra of differential operators

$$R\left[z,\frac{d}{dz}\right]$$
.

q analog of Weyl algebra $W_1(q, \mathbf{R})$ is an associative algebra with two generators \hat{a} and a such that the generating relations is

$$\hat{a}a - qa\hat{a} = 1$$
.

If q is not a root of unity of finite degree, q-analog $W_i(q, \mathbf{R})$ is isomorphic to the algebra of q-Differential operators

$$\boldsymbol{R}[\boldsymbol{z}, D_q]$$
,

where

$$D_q(f(z)) = rac{f(z) - f(qz)}{z(1-q)} \ .$$

q-analog of Weyl algebra is sometimes called q-quatisation by physisist ([2], [3]).

Exceptional case q = a primitive *n*-th root of unity ζ_n , $W_1(\zeta_n, Z)$ has quite beautiful properties; standard elements \hat{a}^n , a^n , $\hat{a}a - a\hat{a}$ play important part of role.

§1.

We mean by ζ_n a primitive *n*-th root of unity, and define ζ_n -analog of Weyl algebra Z[z, d/dz] as follows;

Received October 12, 1987.