TORSION POINTS ON ELLIPTIC CURVES DEFINED OVER QUADRATIC FIELDS

M. A. KENKU and F. MOMOSE

Let k be a quadratic field and E an elliptic curve defined over k. The authors [8, 12, 13] [23] discussed the k-rational points on E of prime power order. For a prime number p, let $n=n(k, p)$ be the least non negative integer such that

$$
E_{p^{\infty}}(k)=\bigcup_{m \geqq 0} \operatorname{ker}\left(p^{m}: E \longrightarrow E\right)(k) \subset E_{p^{n}}
$$

for all elliptic curves E defined over a quadratic field k ([15]). For prime numbers $p<300, p \neq 151,199,227$ nor 277 , we know that $n(k, 2)=3$ or $4, n(k, 3)=2, n(k, 5)=n(k, 7)=1, n(k, 11)=0$ or $1, n(k, 13)=0$ or 1 , and $n(k, p)=0$ for all the prime numbers $p \geqq 17$ as above (see loc. cit.). It seems that $n(k, p)=0$ for all prime numbers $p \geqq 17$ and for all quadratic fields k. In this paper, we discuss the N-torsion points on E for integers N of products of powers of $2,3,5,7,11$ and 13 . Let $N \geqq 1$ be an integer and m a positive divisor of N. Let $X_{1}(m, N)$ be the modular curve which corresponds to the finite adèlic modular group

$$
\Gamma_{1}(m, N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\hat{Z}) \right\rvert\, a-1 \equiv c \equiv 0 \bmod N, b \equiv d-1 \equiv 0 \bmod m\right\}
$$

where $\hat{\boldsymbol{Z}}=\varliminf_{n} \boldsymbol{Z} / n \boldsymbol{Z}$. Then $X_{1}(m, N)$ is defined over $\boldsymbol{Q}\left(\zeta_{m}\right)$, where ζ_{m} is a primitive m-th root of 1 . Put $Y_{1}(m, N)=X_{1}(m, N) \backslash\{$ cusps\}, which is the coarse moduli space $\left(/ \boldsymbol{Q}\left(\zeta_{m}\right)\right)$ of the isomorphism classes of elliptic curves E with a pair $\left(P_{m}, P_{N}\right)$ of points P_{m} and P_{N} which generate a subgroup $\simeq Z / m Z \times Z / N Z$, up to the isomorphism $(-1)_{E}: E \simeq E$. For $m=1$, let $X_{1}(N)=X_{1}(1, N), \Gamma_{1}(N)=\Gamma_{1}(1, N)$ and $Y_{1}(N)=Y_{1}(1, N)$. For the integers $N=2^{4}, 11$ and 13, $X_{1}(N)$ are hyperelliptic and $n(k, 2), n(k, 11)$ and $n(k, 13)$ depend on k [23] (3.3). Our result is the following.

Theorem (0.1). Let N be an integer of a product of powers of 2, 3, 5,

[^0]
[^0]: Received September 29, 1986.

