ON UNRAMIFIED CYCLIC EXTENSIONS OF DEGREE 1 OF ALGEBRAIC NUMBER FIELDS OF DEGREE 1

YOSHITAKA ODAI

Introduction

Let l be an odd prime number and let K be an algebraic number field of degree l. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.

Let Q denote the field of rational numbers and let Z be the ring of rational integers. Let ζ be a primitive l-th root of unity. Let $k = Q(\zeta)$ and $L = K(\zeta)$. In Section 1 we see how an unramified cyclic extension N of K of degree l is obtained from an element α of L. Here α satisfies some conditions, one of which is that there exists an ideal $\mathfrak A$ of L such that $(\alpha) = \mathfrak A^l$. In Section 2, assuming that L is a ramified Galois extension of k, we give a criterion for N to be contained in M by means of α (see Theorem 1). In Section 3, assuming that l is regular, we define F_1 (resp. F_0) as the composite of all those N, for which $\mathfrak A$ are ambigious over k (resp. principal) (see Definition). Theorem 2 proves that $F_1 = F_0 M$. In Section 4 F_0 is investigated and Theorem 4 gives infinitely many examples of N not contained in M.

Notations. $G = \operatorname{Gal}(L/K)$ is a cyclic group of order l-1. Let τ be a generator of G and let \dot{r} be the element of Z/lZ such that $\zeta^{\tau} = \zeta^{\dot{r}}$. Let Z/lZ[G] denote the group ring of G over Z/lZ. We define

$$\dot{e}_i = -\sum\limits_{j=0}^{l-2} \dot{r}^{-ij_{ au j}} \qquad ext{for } 1 \leqq i \leqq l-1$$
 .

Received May 16, 1986.