Y. Miyata Nagoya Math. J. Vol. 107 (1987), 49-62

VERTICES OF IDEALS OF A p-ADIC NUMBER FIELD II

YOSHIMASA MIYATA

Let k be a p-adic number field with the ring v of all integers in k, and K be a finite normal extension with Galois group G. Π denotes a prime element of the ring Ω of all integers in K. Then, an ideal (Π^{a}) of \mathfrak{O} is an \mathfrak{O} -module. E. Noether [5] showed that if K/k is tamely ramified, Ω is a free $\circ G$ -module. A. Fröhlich [2] generalized E. Noether's theorem as follows: \mathfrak{O} is relatively projective with respect to a subgroup S of G if and only if $S \supseteq G_1$, where G_1 is the first ramification group of K/k. Now we define the vertex $V(\Pi^{a})$ of (Π^{a}) as the minimal normal subgroup S of G such that (Π^a) is relatively projective with respect to a subgroup S of G (cf. [7] § 1). Then, the above generalization by A. Fröhlich implies $V(\mathfrak{O}) = G_1$. In the previous paper [7], we proved $G_1 \supseteq V(\Pi^a) \supseteq G_2$, where G_2 is the second ramification group of K/k (cf. [7] Theorem 5). Further, we dealt with the case where $G = G_1$ is of order p^2 , and proved that if $V(\Pi^a) \neq G_1$, then $a \equiv 1(p^2)$ and $t_2 \equiv 1(p^2)$ for the second ramification number t_2 of K/k (cf. [7] Theorems 15 and 21). The purpose of this paper is to prove the similar theorem for the wildly ramified *p*-extension of degree p^n (Theorem 7).

Throughout this paper, we assume that p is an odd prime and the p-extension K/k is wildly ramified. In the first section § 1, we shall prove that (Π^a) is an indecomposable $\circ G$ -module under the assumption relating to the ramification numbers of subextension of K/k (Theorem 2), which is a generalization of S.V. Vostokov's theorem concerning to the indecomposablity of ideals (Π^a) of abelian p-extensions ([10] Theorem 5). In the second section § 2, we shall deal with the case where G_2 is of order p, and we shall prove that if $a \equiv 1$ ($|G_1|$), then $V(\Pi^a) = G_1$, where $|G_1|$ denotes the order of G_1 (Theorem 6). In the last section § 3, we shall prove that if $V(\Pi^a) \neq G_1$ and $t_1 = 1$, then $a \equiv 1$ ($|G_1|$) and $t_i \equiv 1$ ($|G_1/G_{i+1}|$) for $1 \leq i \leq r$, where t_1, t_2, \dots, t_r are ramification numbers of K/k and G_i is

Received January 30, 1986.