S. Takenaka Nagoya Math. J. Vol. 105 (1987), 19-31

REPRESENTATION OF EUCLIDEAN RANDOM FIELD

SHIGEO TAKENAKA

P. Lévy introduced a notion of Brownian motion $\mathscr{X} \equiv \{X(p); p \in M\}$ with parameter in a metric space (M, d), which is a centered Gaussian system satisfying

 $E|X(p) - X(q)|^2 = d(p, q)$ and X(O) = 0, O being the origin.

In the case of $M = \mathbb{R}^n$, S^n or the hyperbolic space H^n with usual geodesic metric, the Brownian motion above has the following representation

(1) $X(p) = Y(S_p)$, where $S_p = \{$ hyperplanes intersect $Op\}$ and $\mathscr{Y} = \{Y(\cdot)\}$ is the Gaussian random measure associated with a certain measure μ on the set of all hyperplanes.

In this paper we shall discuss Brownian motion that corresponds to a general metric. When the metric d on \mathbb{R}^n is expressible as d(p, q) = r(|p-q|) where r is a positive increasing continuous function, the Brownian motion is called a Euclidean random field (ERF). The main purpose of this paper is to establish the representations of the form (1) for some important classes of ERFs.

In Section 1 we will consider a simple and basic class of ERFs, denote it by $\{\mathscr{U}^{\rho}\}$, and their representations. The covariance function of the field \mathscr{U}^{ρ} is of finite range and rotationally invariant. The form (1) for the ordinary Brownian motion with parameter \mathbb{R}^{n} is obtained as the limit $\rho \to \infty$ of these fields \mathscr{U}^{ρ} .

In Section 2 the representation of type (1) will be considered for general ERF related to the $\{\mathscr{U}^{\rho}\}$. We will start with a special class of ERFs. If $r(t) = t^{\alpha}$ the random field is called the self-similar Euclidean random field (SERF) of index α . The representation of SERF of index $0 < \alpha < 1$ will be written as a superposition of the fields \mathscr{U}^{ρ} . For general ERF, two sufficient conditions for the existence of the representation of form (1) will be given as conditions on the function $r(\cdot)$.

Received June 19, 1985.