D. Popescu Nagoya Math. J. Vol. 104 (1986), 85-115

GENERAL NÉRON DESINGULARIZATION AND APPROXIMATION

DORIN POPESCU

§1. Introduction

Let A be a noetherian ring (all the rings are supposed here to be commutative with identity), $a \subset A$ a proper ideal and \hat{A} the completion of A in the a-adic topology. We consider the following conditions

(WAP) Every finite system of polynomial equations over A has a solution in A iff it has one in \hat{A} .

(AP) Every finite system of polynomial equations over A has its set of solutions in A dense with respect to the α -adic topology in the set of its solutions in \hat{A} , i.e. for every solution \hat{y} from \hat{A} and every positive integer $c \in N$ there exists a solution y_c in A such that $y_c \equiv \hat{y} \mod \alpha^c \hat{A}$.

(SAP) For every finite system of polynomial equations f over A there exists a function $\nu: N \to N$ with the following property:

"For every positive integer c and for every system of elements \tilde{y} from A which form a solution of f modulo $\alpha^{\nu(c)}$ there exists a solution y_c of f in A such that $\tilde{y} \equiv y_c \mod \alpha^{c}$ ".

It is easy to note that (SAP) is stronger than (AP) and (WAP) is equivalent with (AP) (see (3.3.1)). We call (A, α) an (AP)-couple (resp. (SAP)-couple) if it satisfies (AP) (resp. (SAP)). A local ring (A, m) is called a ring with the property of Artin approximation or an AP-ring if the couple (A, m) is an AP-couple.

Examples of (non complete) AP-rings are mainly given by the following Theorems:

(1.1) THEOREM (M. Artin [A₁]). The convergent power series rings in $X = (X_1, \dots, X_n)$ over a non-trivial valued field of characteristic zero are AP-rings.

(1.2) THEOREM (M. Artin $[A_2]$). The henselization of a local ring which Received February 25, 1985.