T. Kondo and T. Tasaka Nagoya Math. J. Vol. 101 (1986), 151-179

THE THETA FUNCTIONS OF SUBLATTICES OF THE LEECH LATTICE

TAKESHI KONDO AND TAKASHI TASAKA

To the memory of late Takehiko Miyata

Introduction

Let Λ be the Leech lattice which is an even unimodular lattice with no vectors of squared length 2 in 24-dimensional Euclidean space \mathbb{R}^{24} . Then the Mathieu Group M_{24} is a subgroup of the automorphism group $\cdot 0$ of Λ and the action on Λ of M_{24} induces a natural permutation representation of M_{24} on an orthogonal basis $\{e_i | 1 \leq i \leq 24\}$ of \mathbb{R}^{24} . For $m \in M_{24}$, let Λ_m be the sublattice of vectors invariant under m:

$$\Lambda_m = \{ x \in \Lambda \, | \, x^m = x \}$$

and $\Theta_m(z)$ be the theta function of Λ_m :

$$\Theta_m(z) = \sum_{x \in A_m} e^{\pi i z \ell(x)}$$

where $\ell(x) = \ell(x, x)$ and $\ell(x, y) (x, y \in \mathbb{R}^{24})$ is the inner product of \mathbb{R}^{24} with $\ell(e_i, e_j) = 2\delta_{ij}$.

One of the purposes of this note is to express $\Theta_m(z)$ explicitly by the classical Jacobi theta functions $\theta_i(z)$ (i = 2, 3, 4) and the Dedekind eta-function. The results are given in Table 2 of Section 2. Furthermore, by using these expressions of $\Theta_m(z)$, we will prove the following theorem:

THEOREM 2.1. Let $\Theta_m(z)$ $(m \in M_{24})$ be as above and let

$$\eta_m(z) = \prod \eta(tz)^{i_d}$$

where $\eta(z)$ is the Dedekind eta-function

$$\eta(z) = q^{1/12} \prod_{n=1}^{\infty} (1 - q^{2n}) \qquad (q = e^{\pi i z})$$

Received October, 29, 1984.