P. Orlik and H. Terao Nagoya Math. J. Vol. 134 (1994), 65-73

COMMUTATIVE ALGEBRAS FOR ARRANGEMENTS

PETER ORLIK AND HIROAKI TERAO¹

1. Introduction

Let *V* be a vector space of dimension / over some field K. A hyperplane *H* is a vector subspace of codimension one. An arrangement $\mathscr A$ is a finite collection of hyperplanes in V . We use [7] as a general reference. Let $M(\mathscr{A})\,=\,V-\,\cup_{\,{H}\in\mathscr{A}}H$ be the complement of the hyperplanes. Let V^* be the dual space of V. Each hyperplane $H \in \mathscr{A}$ is the kernel of a linear form $\alpha_{H} \in V^{\ast}$, defined up to a constant. The product

$$
Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H
$$

is called a *defining polynomial* of $\mathcal A$. Brieskorn [3] associated to $\mathcal A$ the finite dimensional skew-commutative algebra $R(\mathcal{A})$ generated by 1 and the differential forms $d\alpha_H/\alpha_H$ for $H\in\mathscr{A}$. When $\mathbf{K}=\mathbf{C}$, the algebra $R(\mathscr{A})$ is isomorphic to the coho mology algebra of the open manifold $M(\mathcal{A})$. The structure of $R(\mathcal{A})$ was determined in [6] as the quotient of an exterior algebra by an ideal. In particular this shows that $R(\mathcal{A})$ depends only on the intersection poset of $\mathcal{A}, L(\mathcal{A})$, and not on the individual linear forms $\alpha_{H^{\star}}$

A subarrangement $\mathcal{B} \subseteq \mathcal{A}$ is called *independent* if $\bigcap_{H \in \mathcal{B}} H$ has codimension \mathcal{B} , the cardinality of \mathcal{B} . In a special lecture at the Japan Mathematical Society in 1992, Aomoto suggested the study of the graded K -vector space

$$
AO(\mathscr{A}) = \sum_{\mathscr{B}} \mathbf{K} Q(\mathscr{B})^{-1}, \quad \mathscr{B} \text{ independent.}
$$

It appears as the top cohomology group of a certain 'twisted' de Rham chain com plex [1]. When $\mathbf{K} = \mathbf{R}$, he conjectured that the dimension of $AO(\mathcal{A})$ is equal to the number of connected components (chambers) of $M(\mathcal{A})$, which he proved for generic arrangements. In this paper we prove this conjecture in general. We construct a

Received March 3, 1993.

 1 This work was supported in part by the National Science Foundation