P. Feit Nagoya Math. J. Vol. 133 (1994), 177–187

EXPLICIT FORMULAS FOR LOCAL FACTORS: ADDENDA AND ERRATA

PAUL FEIT

Introduction

In [3], the author studied certain local integrals derived from Fourier coefficient computations on Eisenstein series. Members of a family of Dirichlet series were characterized as a product of an explicit term with a mysterious polynomial factor. In a recent letter to the author, Professor Shoyu Nagaoka asked specific questions concerning the polynomial factor. Several of these questions can be answered by the techniques in [3]. In Part I of that paper, the relevant term is described precisely; however, in Part II, the term is described as a mysterious, albeit finite, sum. The present paper complete [3] by recording what little is known of that sum.

We illustrate our tables by settling one of the questions raised in Professor Nagaoka's letter. Let F is a totally real number field and let K/F be a purely imaginary quadratic extension. Let \mathcal{D} be the discriminant of K/F, and let $h \in \mathcal{D}^{-1}$. For a finite prime \mathcal{P} of F,

(1)
$$\bar{\alpha}_{\mathscr{P}}^{(2)}\left(S, \begin{bmatrix} h & 0\\ 0 & 0 \end{bmatrix}\right) = (1 - q^{-s})(1 - \psi(\mathscr{P})q^{1-s})(1 - \psi(\mathscr{P})q^{2-s})^{-1}\left(\sum_{j=0}^{b} q^{j(3-s)}\right),$$

where the α -series derives from Eisenstein series for the hermitian modular group of genus 2, ϕ is the ideal character of K/F (normalized to be 0 if \mathcal{P} ramifies), $q = N\mathcal{P}$, and \mathcal{P}^{b} devides the ideal (h) \mathcal{D} while \mathcal{P}^{b+1} does not.

1. The α -series

Let F be a local of any characteristic except 2 and let R be (a choice of) the ring of integers of F. Let \mathcal{P} be the prime of R, and put

(2)
$$q = N\mathcal{P}.$$

Received January 19, 1993.