N. Van Thu Nagoya Math. J. Vol. 133 (1994), 155–175

GENERALIZED INDEPENDENT INCREMENTS PROCESSES^(*)

NGUYEN VAN THU

Dedicated to Professor K. Urbanik on his 60th birthday

We study a class of Markov processes which arise in the theory of generalized convolutions and stand for a generalization of processes with independent increments.

1. Notation and preliminaries

Let P be the set of all probability measures (p.m.'s) on the positive half-line $R_+ = [0, \infty)$ with the weak convergence \xrightarrow{w} . We write δ_x for the unit mass at point x and write T_x for the map given by

$$T_x\mu(B) = \mu(x^{-1}B)$$

for x > 0, $\mu \in P$ and $B \in \mathfrak{B}$, the σ -field of Borel subsets of R_+ . We define $T_0\mu = \delta_0$. We denote by Q the class of all sub-probability measures (sub-p.m.'s) on R_+ . Let C_b be the Banach space of all real bounded continuous functions on R_+ with supremum norm $\|\cdot\|$ and C_0 its subspace consisting of functions vanishing at infinity.

A commutative and associative P-valued binary operation \circ on P with δ_0 as the unit element is called a *generalized convolution*, if it is continuous in each variable separately and distributive with respect to convex combinations and maps T_x , and if it satisfies the following law of large numbers:

Received January 8, 1990.

^(*)The research was carried out during the author's stay at Technische Universität Berlin (1988) and at Nagoya Institute of Technology (1989) under grants from Alexander von Humboldt-Stiftung and the Japan Society for the Promotion of Science.

The paper was supported in part by the National Basic Research Program in Natural Science, Vietnam.