THE MINIMUM AND THE PRIMITIVE REPRESENTATION OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let M, N be positive definite quadratic lattices over \mathbb{Z} with $\mathrm{rank}(M)=m$ and $\mathrm{rank}(N)=n$ respectively. When there is an isometry from M to N, we say that M is represented by N (even in the local cases). In the following, we assume that the localization M_p is represented by N_p for every prime p. Let us consider the following assertion $A_{m,n}(N)$:

 $A_{m,n}(N)$: There exists a constant c(N) dependent only on N so that M is represented by N if $\min(M) > c(N)$, where $\min(M)$ denotes the least positive number represented by M.

We know that this is true if $n \geq 2m+3$, and a natural problem is whether the condition $n \geq 2m+3$ is the best or not. It is known that this is the best if m=1. But in the case of $m \geq 2$, what we know at present, is that there is an example N so that $A_{m,n}(N)$ is false if n-m=3. We do not know such examples when n-m=4. Anyway, analyzing the counter-example, we come to the following two assertions $APW_{m,n}(N)$ and $R_{m,n}(N)$.

 $\operatorname{APW}_{m,n}(N)$: There exists a constant c'(N) dependent only on N so that M is represented by N if $\min(M) > c'(N)$ and M_p is primitively represented by N_p for every prime p.

 $R_{m,n}(N)$: There is a lattice M' containing M such that M'_p is primitively represented by N_p for every prime p and $\min(M')$ is still large if $\min(M)$ is large.

If the assertion $R_{m,n}(N)$ is true, then the assertion $A_{m,n}(N)$ is reduced to the apparently weaker assertion $APW_{m,n}(N)$. If the assertion $R_{m,n}(N)$ is false, then it becomes possible to make a counter-example to the assertion $A_{m,n}(N)$. As a matter of fact, the assertion $R_{m,m+3}(N)$ is false in a certain kind of lattices N and it yields examples of N such that the assertion $A_{m,m+3}(N)$ is false. Note that $APW_{1,4}(N)$ is true for every N although $A_{1,4}(N)$ is false in general.

We proved in [4] that the assertion $R_{m,2m+2}(N)$ is true if $m \geq 2$. The aim of this paper is to show that the assertion $R_{m,2m+1}(N)$ is also true if $m \geq 3$ (Theorem

Received June 15, 1993.