T. Watanabe Nagoya Math. J. Vol. 132 (1993), 141-153

OSCILLATION OF MODES OF SOME SEMI-STABLE LÉVY PROCESSES

TOSHIRO WATANABE

§1. Introduction

In this paper it is shown that there is a unimodal Lévy process with oscillating mode. After the author first constructed an example of such a selfdecomposable process, Sato pointed out that it belongs to the class of semi-stable processes with $\beta < 0$. We prove that all non-symmetric semi-stable selfdecomposable processes with $\beta < 0$ have oscillating modes.

A measure μ on **R** is said to be *unimodal* with mode $a \in \mathbf{R}$ if $\mu(dx) = c \, \delta_a(dx) + f(x) dx$, where c is non-negative, δ_a is the delta measure at a and f(x) is non-decreasing on $(-\infty, a)$ and non-increasing on (a, ∞) . If a measure μ is unimodal, then either its mode is unique or the set of its modes is a closed interval. Let $\{X_i\}, t \in [0, \infty)$, be a Lévy process on **R** (that is, a stochastically continuous process with stationary independent increments starting at the origin) and let μ_t be the distribution of X_t . The Lévy process $\{X_t\}$ is said to be unimodal if μ_t is unimodal for each t. When a Lévy process $\{X_t\}$ is unimodal, we denote a mode of μ_t by a(t). In case the set of modes of μ_t is a closed interval, there is freedom of choice of a(t). The Lévy process $\{X_t\}$ is said to be *self-decomposable* if μ_t is an L distribution for each t. A self-decomposable Lévy process is simply called a self-decomposable process. Yamazato proves in the celebrated paper [16] that every self-decomposable process is unimodal. We say that a Lévy process $\{X_t\}$ is semi-stable if there exist real numbers β and γ such that $0 < |\beta| < 1, 1 < \gamma$, $\gamma = |\beta|^{-\lambda}$ ($0 < \lambda \leq 2$) and

(1.1)
$$\hat{\mu}_t(z) = \hat{\mu}_{\tau t}(\beta z)$$

for every $z \in \mathbf{R}$ and every $t \ge 0$, where

(1.2)
$$\hat{\mu}_t(z) = \int_0^\infty e^{izx} \mu_t(dx).$$

Received June 22, 1992.