H. Saito Nagoya Math. J. Vol. 130 (1993), 149–176

ON *L*-FUNCTIONS ASSOCIATED WITH THE VECTOR SPACE OF BINARY QUADRATIC FORMS

HIROSHI SAITO

Introduction

The purpose of this paper is to prove functional equations of L-functions associated with the vector space of binary quadratic forms and determine their poles and residues. For a commutative ring K, let V(K) be the set of all symmetric matrices of degree 2 with coefficients in K. In $V(\mathbf{C})$, we consider the inner product

$$\langle x, y \rangle = \operatorname{tr}(xy') \quad (x, y \in V(\mathbf{C})),$$

where $y' = \begin{pmatrix} y_3 & -y_2 \\ -y_2 & y_1 \end{pmatrix}$ for $y = \begin{pmatrix} y_1 & y_2 \\ y_2 & y_3 \end{pmatrix}$. For i = 1, 2, we set $V_i = \{x \in V(\mathbf{R}) \mid (-1)^i \det x > 0\},$

and $V_t(\mathbf{Q}) = V(\mathbf{Q}) \cap V_t$. We define two subsets of $V_1(\mathbf{Q})$ by

$$V_1'(\mathbf{Q}) = \{ x \in V_1(\mathbf{Q}) \mid \sqrt{-\det x} \notin \mathbf{Q} \},$$
$$V_1''(\mathbf{Q}) = \{ x \in V_1(\mathbf{Q}) \mid \sqrt{-\det x} \in \mathbf{Q} \}.$$

Let $G = GL_2(\mathbf{C})$, $G(\mathbf{R}) = GL_2(\mathbf{R})$, $G(\mathbf{Q}) = GL_2(\mathbf{Q})$, and $G^+ = \{g \in G(\mathbf{R}) \mid det g > 0\}$. Then G acts on $V(\mathbf{C})$ by $\rho(g)x = gx^tg$ for $x \in V(\mathbf{C})$ and $g \in G$, and the triple (G, ρ, V) is a prehomogeneous vector space with the singular set $S = \{x \in V \mid det x = 0\}$. For $g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$, set $dg = (det g)^{-2} \prod_{1 \le i,j \le 2} dg_{ij}$. Then dg defines a Haar measure on G^+ . We consider the measures $dx = dx_1 dx_2 dx_3$ and $\omega(x) = |\det x|^{-3/2} dx \quad \left(x = \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}\right)$ on $V(\mathbf{R})$. The measure $\omega(x)$ is invariant under the action of G^+ . Let Γ be a subgroup of $SL_2(\mathbf{Z})$ of finite index. We assume $\{\pm 1\} \subset \Gamma$. For $x \in V(\mathbf{R})$, let $G_x^+ = \{g \in G^+ \mid \rho(g)x = x\}$,

Received October 24, 1991.