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1. Introduction

Our setting for this paper is projective 3-space Pf} over an algebraically
closed field K. By a curve C C P,i is meant a 1-dimensional, equidimensional pro-
jective algebraic set, which is locally Cohen-Macaulay. Let M(C) = ®,., H' (P},
J-(m)) be the Hartshorne-Rao module of finite length (cf. [R]). Here Z is the set of
integers and J the ideal sheaf of C. In [GMV] it is shown that M(C) = H,,(R),
where R = R/I(C) = Klx,,. .., x,] /I(C), I(C) is the homogeneous ideal of C,
m = (x,,..., )R and HMI(M) is the first local cohomology module of the
R-module M with respect to m. Thus there exists a smallest nonnegative integer k
€ N such that mkH;(I?) = 0, (see also the discussion on the 1-st local cohomolo-
gy module in [GW]). Also in [GMV] it is shown that k¥ = 0 if and only if C is
arithmetically Cohen-Macaulay and C is arithmetically Buchsbaum if and only if k
< 1. We therefore have the following natural definition.

DerINITION 1.1, For a curve C & P,a(, C is said to be strictly k-Buchsbaum if
k is minimal in N such that mkH;(R) = 0. C is said to be k-Buchsbaum if
mH,,(R) = 0.

If C is strictly k-Buchsbaum, then we set k = k(C) and call k(C) the Buch-
sbaum number of C.

It is our purpose in this paper to investigate for the class of monomial curves
C(n,, ny,, ny) < Py the integer k(C(n,, n,, n,)). These curves are defined by their
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ST, SRR ER), where ny < m, < m, are positive integers

generic zero (s™, s
and g.c.d.(n;, n, n) = 1. For some of these curves k(C(n,, n, n,)) was
obtained in [FH], [H] and [FV] and we will discuss some of these results as con-
sequences of out own investigations (see also [HV] and [MM]).

Our own main result is that k(C) = diam(M(C)) for all monomial curves in
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