H. Tasaki Nagoya Math. J. Vol. 137 (1995), 33-53

INTEGRAL GEOMETRY UNDER CUT LOCI IN COMPACT SYMMETRIC SPACES

HIROYUKI TASAKI

Dedicated to Professor Masaru Takeuchi on his sixtieth birthday

Introduction

The theory of integral geometry has mainly treated identities between integral invariants of submanifolds in Riemannian homogeneous spaces like as $\int_G I(M \cap gN) d\mu_G(g)$, where M and N are submanifolds in a Riemannian homogeneous spaces of a Lie group G and $I(M \cap gN)$ is an integral invariant of $M \cap gN$. For example Poincaré's formula is one of typical identities in integral geometry, which is as follows. We denote by $M(\mathbf{R}^2)$ the identity component of the group of isometries of the plane \mathbf{R}^2 with a suitable invariant measure $\mu_{M(\mathbf{R}^2)}$. The Poincaré's formula for two curves c_1 and c_2 in \mathbf{R}^2 is given by

$$\int_{M(\mathbb{R}^2)} \# (c_1 \cap gc_2) d\mu_{M(\mathbb{R}^2)} = 2L(c_1)L(c_2),$$

where #(X) denotes the number of the points of X and L(c) denotes the length of c. See I.7.2 Poincaré's formula in [15] for more information about it. Chern [3], Kurita [9], Brothers [2] and Howard [7] extended this formula to the case of Riemann homogeneous spaces. We use the notation in Howard [7]. Let M and N be submanifolds of finite volume in a Riemannian homogeneous space G/K of a Lie group G which satisfy $\dim(G/K) \leq \dim M + \dim N$. Then

$$\int_{G} \operatorname{vol}(M \cap gN) d\mu_{G}(g) = \int_{M \times N} \sigma_{K}(T_{x}^{\perp}M, T_{y}^{\perp}N) d\mu_{M \times N}(x, y).$$

 σ_{κ} is an integral invariant, which is defined in Section 1. In the case of $G/K = \mathbf{R}^2$, σ_{κ} is constant and the above formula implies the Poincaré's one. More generally

Received February 17, 1994