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Introduction

The theory of integral geometry has mainly treated identities between integral

invariants of submanifolds in Riemannian homogeneous spaces like as / I(M Π gN)
JG

dμG(g), where M and N are submanifolds in a Riemannian homogeneous spaces of

a Lie group G and I(M Π gN) is an integral invariant of M Π gN. For example

Poincare's formula is one of typical identities in integral geometry, which is as fol-

lows. We denote by M(R ) the identity component of the group of isometries of

the plane R with a suitable invariant measure μM(R2}. The Poincare's formula for

two curves cx and c2 in R is given by

J # (c, Π gc2)dμm^) = 2L(c1)L(c2),
JM(R2)

where # (X) denotes the number of the points of X and L(c) denotes the length of

c. See 1.7.2 Poincare's formula in [15] for more information about it. Chern [3],

Kurίta [9], Brothers [2] and Howard [7] extended this formula to the case of

Riemann homogeneous spaces. We use the notation in Howard [7]. Let M and N be

submanifolds of finite volume in a Riemannian homogeneous space G/K of a Lie

group G which satisfy dim(G/K) < dim M + dim N. Then

ΓvoKM Π gN)dμG(g) = f σκ{T,M, Ty

λN)dμMxN(x, y).
JG JMXN

σκ is an integral invariant, which is defined in Section 1. In the case of G/K —

R , σκ is constant and the above formula implies the Poincare's one. More generally
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