H. Kozono, Y. Maeda and H. Naito Nagoya Math. J. Vol. 139 (1995), 93-128

GLOBAL SOLUTION FOR THE YANG-MILLS GRADIENT FLOW ON 4-MANIFOLDS

HIDEO KOZONO, YOSHIAKI MAEDA _{AND} HISASHI NAITO[†]

1. Introduction

In this paper, we will study a global weak solution for the Yang-Mills gradient flow on a closed (i.e., compact without boundary) 4-manifold. Let us explain some notion briefly to be able to state our results.

Let M be a closed 4-manifold, G a compact Lie group embedded as a subgroup of SO(l), or SU(l) and P be a principal G-bundle over M. We now assume the universal covering \tilde{G} of G is compact. Denote by \mathfrak{g} the Lie algebra of G and denote also by \mathfrak{g}_p and \mathfrak{G}_p the adjoint and automorphism bundles of P, respectively. Using the metric on G induced by the Killing form, we fix a metric on P compatible with the action of G. Let $\mathcal{Q}^k(\mathfrak{g}_p)$ be the space of smooth \mathfrak{g} -valued k-forms, i.e., $\mathcal{Q}^k(\mathfrak{g}_p) = C^{\infty}(M;\mathfrak{g}_p \otimes \wedge^k T^*M)$. Here, for the space $\mathcal{Q}^k(\mathfrak{g}_p)$ of \mathfrak{g}_p -valued k-forms, we can define Sobolev spaces $W^{m,p}$, L^p with norms $\| \ \|_{W^{m,p}}$, $\| \ \|_p$ in usual way.

Connections on P are explained by taking an open covering $\{U_{\alpha}\}$ on M; we trivialize P on U_{α} via a trivialization: $P|_{U_{\alpha}} \cong U_{\alpha} \times G$. A connection D on P is, by definition, given by $D = d + A_{\alpha}$ on U_{α} , where A_{α} is a g-valued 1-form on U_{α} . Moreover, for a set of transition functions $\{g_{\alpha\beta}\}$ of P associated with the trivialization for $\{U_{\alpha}\}$, where $g_{\alpha\beta}$: $U_{\alpha} \cap U_{\beta} \to G$, D satisfies

$$A_{\beta} = g_{\alpha\beta}^{-1} dg_{\alpha\beta} + g_{\alpha\beta}^{-1} A_{\alpha} g_{\alpha\beta} \quad \text{on } U_{\alpha} \cap U_{\beta}.$$

We denote by d_D and d_D^* the covariant exterior differentiation and its formal adjoint with respect to a connection D, respectively. Moreover, the covariant differentiation on tensors for the connection D is defined by \tilde{V}_D . If D is a smooth connection, then its curvature is given by $R_D = d_D^2 \in \Omega^2(\mathfrak{g}_P)$.

We consider the Yang-Mills gradient flow; the steepest descent flow of the

Received December 11, 1992.

Revised September 14, 1994.

[†]Partially supported by the Ishida Foundation.