S. TakayamaNagoya Math. J.Vol. 146 (1997), 185–197

ON RELATIVE BASE POINT FREENESS OF ADJOINT BUNDLE

SHIGEHARU TAKAYAMA

Abstract. We give an effective result on the relative base point freeness of an adjoint bundle for a pair of a projective morphism and a relatively ample line bundle.

$\S1.$ Introduction

Recently, Angehrn and Siu [AS] and Tsuji [Tj] independently obtained results on the following:

FUJITA'S FREENESS CONJECTURE OF ADJOINT BUNDLES. ([F]) Let X be an n-dimensional projective manifold defined over \mathbb{C} with an ample line bundle L. Then the adjoint bundle $\mathcal{O}_X(K_X \otimes L^{\otimes m})$ is generated by global sections for every m > n.

Their effective bounds are m > n(n+1)/2. The basic ideas of their proofs from [AS] and [Tj] (use of Riemann-Roch theorem, Nadel's vanishing theorem, Ohsawa-Takegoshi's L^2 -extension theorem and so on) are extremely simple and can be applied to a variety of contexts. In this note we would like to go into detail about the method and consider the following relative version:

MAIN THEOREM. Let $f: X \longrightarrow Y$ be a projective morphism from a complex manifold X to a complex space Y, and let L be a relatively ample line bundle on X. Then $\mathcal{O}_X(K_X \otimes L^{\otimes m})$ is f-free, i.e., the natural sheaf homomorphism

$$f^*f_*\mathcal{O}_X(K_X \otimes L^{\otimes m}) \longrightarrow \mathcal{O}_X(K_X \otimes L^{\otimes m})$$
 is surjective,

for every

$$m > \frac{1}{2} d (d+1),$$

here d is the maximum dimension of the fibres of f.

Received September 20, 1995.