S. Cho, H. Ahn and S. Kim Nagoya Math. J.Vol. 148 (1997), 23–38

STABILITY OF HÖLDER ESTIMATES FOR $\overline{\partial}$ ON PSEUDOCONVEX DOMAINS OF FINITE TYPE IN \mathbb{C}^2

S. CHO¹, H. AHN AND S. KIM

Abstract. Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^2 and let $b\Omega$ be of finite type m. Then we prove the stability of Hölder estimates for $\overline{\partial}$ under some perturbations of $b\Omega$. As an application, we prove the Mergelyan property with respect to $C^{\alpha}(\overline{\Omega})$ norms for $0 \leq \alpha < 1/m$.

§1. Introduction

Methods of integral representations for estimating solutions for $\overline{\partial}$ -equation in several complex variables have been successfully used for strongly pseudoconvex domains [G-L, H, R1]. For weakly pseudoconvex domains of finite type in \mathbb{C}^2 , Range [R2] has introduced a method for constructing integral kernels on smoothly bounded pseudoconvex domains. This method was based on Skoda's L^2 estimates [S] for holomorphic solutions $h_j(p, z)$, j = 1, 2, of the division problem

$$h_1(p,z)(z_1-p_1)+h_2(p,z)(z_2-p_2)=1, \ p\in b\Omega, \ z\in \Omega.$$

He has used the detailed geometric analysis of Catlin [C], near a boundary point $p_0 \in b\Omega$ of finite type to get pointwise estimates of $h_j(p, z), z \in \Omega$, j = 1, 2. The result was:

THEOREM. ([R2]) Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^2 of finite type m, and let $f \in C^1_{0,1}(\overline{\Omega})$ be $\overline{\partial}$ -closed. Then for every $\eta > 0$, there is a solution $u^{(\eta)}$ of $\overline{\partial} u = f$ on Ω which satisfies

(1.1)
$$|u^{(\eta)}(z) - u^{(\eta)}(w)| \le C_{\eta} ||f||_{L^{\infty}(\Omega)} |z - w|^{\frac{1}{m} - \eta}$$

for $z, w \in \Omega$. The constant C_{η} is independent of f.

Received June 17, 1996.

¹Partially supported by Basic Sci. Res. fund 96-1411, and by GARC-KOSEF, 1996