U. Nagel and P. Schenzel Nagoya Math. J. Vol. 152 (1998), 153-174

DEGREE BOUNDS FOR GENERATORS OF COHOMOLOGY MODULES AND CASTELNUOVO-MUMFORD REGULARITY

UWE NAGEL AND PETER SCHENZEL

Abstract. By extending Mumford's result on the generating by global sections there are estimates on the degree for generators of local cohomology modules. These arguments provide bounds on the Castelnuovo-Mumford regularity, in particular for Cohen-Macaulay varieties. As an application they imply a few more cases of varieties that satisfy a conjecture posed by Eisenbud and Gôto.

§1. Introduction

Let \mathcal{F} denote a coherent sheaf on the projective space $\mathbb{P}^n = \mathbb{P}_K^n$, K denotes an algebraically closed field. In [15], Lecture 14, \mathcal{F} is called *m*-regular, $m \in \mathbb{Z}$, provided $H^i(\mathbb{P}^n, \mathcal{F}(m-i)) = 0$ for all i > 0. Then it turns out, see loc. cit., that $\mathcal{F}(k)$ is generated as $\mathcal{O}_{\mathbb{P}^n}$ -module by its global sections if $k \geq m$. By more recent results, see e. g. [5], this is generalized to the generation of \mathcal{S}_j , the *j*-th sheaf of syzygies of \mathcal{F} . Here we want to show another generalization of Mumford's result. In order to formulate our approach we fix a few notation. For s > 0 let

$$r_s(\mathcal{F}) := \min\{m \in \mathbb{Z} \mid H^i(\mathbb{P}^n, \mathcal{F}(m-i)) = 0 \text{ for all } i \ge s\}.$$

Note that reg $\mathcal{F} = r_1(\mathcal{F})$ is called the Castelnuovo-Mumford regularity of \mathcal{F} . Hence \mathcal{F} is *m*-regular for all $m \geq \operatorname{reg} \mathcal{F}$. Furthermore, define $e_i^+(\mathcal{F})$ the smallest integer $m \in \mathbb{Z}$ such that $H^i(\mathbb{P}^n, \mathcal{F}(k))$ is spanned by $H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)) \otimes H^i(\mathbb{P}^n, \mathcal{F}(k-1))$ for all k > m. By Serre's vanishing result this is true for all $m \gg 0$. More precisely, Mumford's result, see loc. cit., says $e_0^+(\mathcal{F}) \leq \operatorname{reg} \mathcal{F}$. Its extension is our first main result.

THEOREM 1.1. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^n . Then there is the following bound

$$e_i^+(\mathcal{F}) \le r_{i+1}(\mathcal{F}) - i$$

for all $i \geq 0$.

Received July 29, 1997.