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1. Introduction. Let g(x) be real and continuous in the infinite open
interval (— o, ) and let y:(x,1), ¥:(x, 1) be the solutions of

(1.1) Y +{d—gx)}y=0"

with the initial conditions

(1.2) y1(0,2) =1, 9/(0,2) =0, ».(0,2) =0, »/(0,2) =1.

For appropriate homogeneous real boundary conditions at x = — o, ¥ = o of

the differential operator
- a
(1' 3) Lx - Q(x) - dxg ’

there corresponds real symmetric positive definite matrix

1.4) P(u:) — P(wy) = (Pjru) — pie(nr)), (4, =1,2),
— o0 oy #s <o,

such that we have Weyl ® -Stone’s* expansion (in the sense of L.-convergence):

(1.5) for real-valued f(x) &€ Ly(— o0, ),
s =tim (" au 33 [yt f(&ma(s wds).
n>r J ~» J,k=1J0 -n
Recently and independently of each other, E. C. Titchmarsh* and K. Kodaira »

Received December 20, 1949, (Added March 5, 1950). The result was communicated to
Prof. K. Kodaira at Princeton, who informed to the author that a similar treatment
may be carried on by Prof. N. Levinson. So a copy of the manuscript was sent to Prof.
Levinson, who, in his letter of February 25, informed to the author that his work was
submitted to the Duke Math. Journal in May, 1949. He says that his method is dif-
ferent from the pressent note; he proceeds in his proof from the Parseval relation of
the Sturm-Liouville orthonormal functions.
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