NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR RETARDED DIFFERENTIAL EQUATIONS WITH A PARAMETER
 Tadeusz Jankowski

One step methods combined with an iterative method are applied to find a numerical solution of boundary value problems for retarded ordinary differential equations with a parameter. This paper deals with the convergence of such methods. Some estimates of errors are given too.

1. Introduction. We consider the system of retarded ordinary differential equations

$$
\begin{equation*}
y^{\prime}(t)=f\left(t, y(t), y\left(\alpha_{1}(t)\right), \cdots, y\left(\alpha_{r}(t)\right), \lambda\right), \quad t \in J=[a, b], \quad a<b, \tag{1}
\end{equation*}
$$

where $f: J \times R^{q(r+1)} \times R^{p} \rightarrow R^{q}$ and $\alpha_{i}: J \rightarrow R$ are continuous and $\alpha_{i}(t)<t, t \in J, i=$ $1,2, \cdots, r$. Here $\lambda \in R^{p}$ is a parameter. We assume that the solution of (1) is given on J_{a}, so

$$
\begin{equation*}
y(t)=\Psi(t), \quad t \in J_{a}=[\bar{a}, a], \quad \bar{a}=\inf _{t \in J}\left\{\alpha_{i}(t), i=1,2, \cdots, r\right\} \quad \Psi \in C^{1}\left(J_{a}, R^{q}\right) . \tag{2}
\end{equation*}
$$

Here $C^{1}\left(J_{a}, R^{q}\right)$ denotes the space of all functions of the class C^{1} defined on J_{a} with a range in R^{q}. We are interested in the solution of (1-2) that satisfies the nonlinear boundary condition

$$
\begin{equation*}
g(\lambda, y(b))=\Theta_{p}, \quad \Theta_{p} \text { is zero element in } R^{p} \tag{3}
\end{equation*}
$$

where $g: R^{p} \times R^{q} \rightarrow R^{p}$. By a solution of (1-3) we mean a function $\varphi \in C^{1}\left(J, R^{q}\right)$ and a parameter $\lambda \in R^{p}$ such that (1-3) to be satisfied. Problem (1-3) may also be named as an eigenvalue problem for retarded differential equations or as a problem of terminal control. Sometimes g may be linear with respect to its variables or may depend on λ or $y(b)$ only.

The question of existence and uniqueness of solutions of problems with parameters is alredy investigated (see, for example, $[3,8,9,10]$). Due to this fact it will be assumed that our problem has the exact solution (φ, λ). A numerical approximation of this solution is a task of this paper.

Notice that φ is a function of λ. It is known that if f has continuous first order partial derivatives with respect to the last $r+2$ variables, then

$$
Y(t ; \lambda) \equiv \frac{\partial}{\partial \lambda} \varphi(t ; \lambda)
$$

is the solution of the problem

$$
\left\{\begin{align*}
Y^{\prime}(t ; \lambda) & =f_{0}\left(t, \varphi(t), \varphi\left(\alpha_{1}(t)\right), \cdots, \varphi\left(\alpha_{r}(t)\right), \lambda\right) Y(t ; \lambda)+ \tag{4}\\
& +\sum_{i=1}^{r} f_{i}\left(t, \varphi(t), \varphi\left(\alpha_{1}(t)\right), \cdots, \varphi\left(\alpha_{r}(t)\right), \lambda\right) Y\left(\alpha_{i}(t) ; \lambda\right)+ \\
& +f_{\lambda}\left(t, \varphi(t), \varphi\left(\alpha_{1}(t)\right), \cdots, \varphi\left(\alpha_{r}(t)\right), \lambda\right), \quad t \in J, \\
Y(a ; \lambda) & =0_{q \times p} .
\end{align*}\right.
$$

