NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR RETARDED DIFFERENTIAL EQUATIONS WITH A PARAMETER

Tadeusz Jankowski

One step methods combined with an iterative method are applied to find a numerical solution of boundary value problems for retarded ordinary differential equations with a parameter. This paper deals with the convergence of such methods. Some estimates of errors are given too.

1. Introduction. We consider the system of retarded ordinary differential equations

(1)
$$y'(t) = f(t, y(t), y(\alpha_1(t)), \cdots, y(\alpha_r(t)), \lambda), \quad t \in J = [a, b], \quad a < b,$$

where $f: J \times R^{q(r+1)} \times R^p \to R^q$ and $\alpha_i: J \to R$ are continuous and $\alpha_i(t) < t, t \in J, i = 1, 2, \dots, r$. Here $\lambda \in R^p$ is a parameter. We assume that the solution of (1) is given on J_a , so

(2)
$$y(t) = \Psi(t), \quad t \in J_a = [\bar{a}, a], \quad \bar{a} = \inf_{t \in J} \{\alpha_i(t), i = 1, 2, \cdots, r\} \quad \Psi \in C^1(J_a, R^q).$$

Here $C^1(J_a, R^q)$ denotes the space of all functions of the class C^1 defined on J_a with a range in R^q . We are interested in the solution of (1-2) that satisfies the nonlinear boundary condition

(3)
$$g(\lambda, y(b)) = \Theta_p, \quad \Theta_p \text{ is zero element in } \mathbb{R}^p,$$

where $g: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^p$. By a solution of (1-3) we mean a function $\varphi \in C^1(J, \mathbb{R}^q)$ and a parameter $\lambda \in \mathbb{R}^p$ such that (1-3) to be satisfied. Problem (1-3) may also be named as an eigenvalue problem for retarded differential equations or as a problem of terminal control. Sometimes g may be linear with respect to its variables or may depend on λ or y(b) only.

The question of existence and uniqueness of solutions of problems with parameters is alredy investigated (see, for example, [3, 8, 9, 10]). Due to this fact it will be assumed that our problem has the exact solution (φ , λ). A numerical approximation of this solution is a task of this paper.

Notice that φ is a function of λ . It is known that if f has continuous first order partial derivatives with respect to the last r + 2 variables, then

$$Y(t;\lambda)\equiv {\partial\over\partial\lambda}arphi(t;\lambda)$$

is the solution of the problem

(4)
$$\begin{cases} Y'(t;\lambda) = f_0(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda)Y(t;\lambda) + \\ + \sum_{i=1}^r f_i(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda)Y(\alpha_i(t);\lambda) + \\ + f_\lambda(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda), \quad t \in J, \\ Y(a;\lambda) = 0_{q \times p}. \end{cases}$$

-115-