ON THE CLASS Y OPERATORS

Atsushi UCHIYAMA and Takashi YOSHINO

Abstract. In [9], one of the authors proved that, for a M-hyponormal operator A^* and for a dominant operator B, CA = BC implies $CA^* = B^*C$. In the case where A^* and B are normal, this result are well known as the Putnam-Fuglede theorem. In this paper, we will generalize this result to the cases where A^* or both A^* and B belong to some class $\mathcal Y$ which includes the class of M-hyponormal operators. And also we prove that every compact operators in the class $\mathcal Y$ are normal.

We denote the set of all bounded linear operators on a Hilbert space \mathcal{H} by $\mathcal{B}(\mathcal{H})$. The following results are well known.

Fuglede's theorem. ([2]) If $T \in \mathcal{B}(\mathcal{H})$ is normal and if TS = ST for some $S \in \mathcal{B}(\mathcal{H})$, then $T^*S = ST^*$.

Putnam's corollary. ([3]) If A^* and B are normal operators on Hilbert spaces \mathcal{H} and \mathcal{K} respectively and if C is a bounded linear operator from \mathcal{H} to \mathcal{K} such that CA = BC, then $CA^* = B^*C$.

Lemma 1. ([1]) For $A, B \in \mathcal{B}(\mathcal{H})$, the following assertions are equivalent.

- (i) $A\mathcal{H} \subseteq B\mathcal{H}$.
- (ii) $AA^* \le \lambda^2 BB^*$ for some $\lambda \ge 0$.
- (iii) There exists a $C \in \mathcal{B}(\mathcal{H})$ such that A = BC.

In particular, there exists a $C \in \mathcal{B}(\mathcal{H})$ uniquely such that

(a)
$$||C||^2 = \inf\{\mu ; AA^* \le \mu BB^*\}$$

(b)
$$\mathcal{N}_A = \mathcal{N}_C$$
 and (c) $C\mathcal{H} \subseteq [B^*\mathcal{H}]^{\sim}$.