TWO CONDITIONS ON THE RICCI TENSOR OF A REAL HYPERSURFACE OF COMPLEX PROJECTIVE SPACE

MIGUEL ORTEGA, JUAN DE DIOS PÉREZ AND YOUNG JIN SUH*

ABSTRACT. We study two conditions on the Ricci tensor of a real hypersurface of complex projective space that allows us to characterize certain real hypersurfaces. We also introduce a new kind of such real hypersurfaces.

§1. Introduction

Let CP^m be a complex projective space of complex dimension m endowed with the Fubini-Study metric g of constant holomorphic sectional curvature 4. Let Mbe a connected real hypersurface of CP^m and N a local unit normal vector field on M. Then $\xi = -JN$ is tangent to M, where J denotes the almost complex structure of CP^m .

Let us denote by A, R and S the shape operator, the curvature tensor and the Ricci tensor of M, respectively. We put h = traceA and $H = hA - A^2$.

A real hypersurface M of \mathbb{CP}^m is called *pseudo-Einstein* if its Ricci tensor satisfies

(1.1)
$$SX = aX + bg(X,\xi)\xi$$

for any vector field X tangent to M and some functions a, b on M, where g denotes the induced Riemannian metric on M. Pseudo-Einstein real hypersurfaces of CP^m are classified by the following theorem:

Theorem A. ([1]) Let M be a complete pseudo-Einstein real hypersurface of CP^m , $m \ge 3$. Then M is locally congruent to one of the following spaces:

- a) a geodesic hypersphere,
- b) a tube of radius r over a totally geodesic CP^k $(1 \le k \le m-2)$, where $0 < r < \frac{\pi}{2}$ and $\cot^2 r = \frac{k}{m-k-1}$,

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

^{*} This paper was supported by BSRI-96-1404 and partly by TGRC-KOSEF