ON SOME CIRCLES IN PSEUDO-RIEMANNIAN MANIFOLDS

BY JAE-BOK JUN*AND SHIGEO FUEKI

§1. Introduction.

Let \widetilde{M} be a Riemannian manifold. A totally umbilical submanifold M of \widetilde{M} with parallel mean curvature vector field is said to be an *extrinsic sphere* [2]¹.

One-dimensional extrinsic spheres are the curves c to be called *circles*, which were considered under the name of geodesic circles or curvature circles characterized by the following differential equations

$$\nabla_X \nabla_X X + \langle \nabla_X X, \nabla_X X \rangle X = 0,$$

where \langle , \rangle is the metric, ∇ is covariant differentiation along c and X is the unit tangent vector field of c. For a circle $c, k := \langle \nabla_X X, \nabla_X X \rangle^{\frac{1}{2}}$ is a non-negative constant which is called the *curvature* of c. Especially k = 0, a circle c is a *geodesic*. The following theorems are well-known:

Theorem A([2]). Let M (dim $M \ge 2$) be a connected Riemannian submanifold of a Riemannian manifold \widetilde{M} . For some k > 0, the following conditions are equivalent:

(1) Every circle of radius k in M is a circle in \overline{M} ,

(2) M is an extrinsic sphere in \widetilde{M} .

On the other hand, if the development of c(s) in the tangent Möbius space is a circle, then c(s) is called a *conformal circle* (cf. [1], [3]). Then the equation of the conformal circle is given by

(1.1)
$$\nabla_X \nabla_X X + \left(\langle \nabla_X X, \nabla_X X \rangle + \frac{1}{n-2} \langle SX, X \rangle \right) X - \frac{1}{n-2} SX = 0,$$

where S is the Ricci operator of M (dim $M = n \ge 3$). Remark that (1.1) is represented by the Riemannian metric and the Riemannian connection. Also they showed in [1] that, when every circle in M is a conformal circle in \widetilde{M} , M is totally umbilical in \widetilde{M} .

¹⁾Numbers in brackets refer to the references at the end of the paper.

^{*)} Partially supported by TGRC-KOSEF.