Nihonkai Math. J.
Vol. 5 (1994), 131-137

ON SOME CIRCLES IN PSEUDO-RIEMANNIAN MANIFOLDS

by Jae-Bok Jun*and Shigeo Fueki

§1. Introduction.

Let \widetilde{M} be a Riemannian manifold. A totally umbilical submanifold M of \widetilde{M} with parallel mean curvature vector field is said to be an extrinsic sphere [2] ${ }^{1}$.

One-dimensional extrinsic spheres are the curves c to be called circles, which were considered under the name of geodesic circles or curvature circles characterized by the following differential equations

$$
\nabla_{X} \nabla_{X} X+\left\langle\nabla_{X} X, \nabla_{X} X\right\rangle X=0,
$$

where \langle,$\rangle is the metric, \nabla$ is covariant differentiation along c and X is the unit tangent vector field of c. For a circle $c, k:=\left\langle\nabla_{X} X, \nabla_{X} X\right\rangle^{\frac{1}{2}}$ is a non-negative constant which is called the curvature of c. Especially $k=0$, a circle c is a geodesic. The following theorems are well-known:

Theorem A([2]). Let M (dim $M \geq 2$) be a connected Riemannian submanifold of a Riemannian manifold \widetilde{M}. For some $k>0$, the following conditions are equivalent:
(1) Every circle of radius k in M is a circle in \widetilde{M},
(2) M is an extrinsic sphere in \widetilde{M}.

On the other hand, if the development of $c(s)$ in the tangent Möbius space is a circle, then $c(s)$ is called a conformal circle (cf. [1], [3]). Then the equation of the conformal circle is given by

$$
\begin{equation*}
\nabla_{X} \nabla_{X} X+\left(\left\langle\nabla_{X} X, \nabla_{X} X\right\rangle+\frac{1}{n-2}\langle S X, X\rangle\right) X-\frac{1}{n-2} S X=0 \tag{1.1}
\end{equation*}
$$

where S is the Ricci operator of M ($\operatorname{dim} M=n \geq 3$). Remark that (1.1) is represented by the Riemannian metric and the Riemannian connection. Also they showed in [1] that, when every circle in M is a conformal circle in \widetilde{M}, M is totally umbilical in \widetilde{M}.

[^0]
[^0]: ${ }^{1)}$ Numbers in brackets refer to the references at the end of the paper.
 *) Partially supported by TGRC-KOSEF.

