Bellman equations for discrete time two-parameter optimal stopping problems

Teruo Tanaka

Abstract

We study Bellman equations associated with two-parameter optimal stopping problems for discrete time bi-Markov processes. The existence and the uniqueness of a solution of the Bellman equation for our problem are investigated by using the concept of the bi-excessive function.

Keywords : Bellman equation * bi-excessive function * bi-Markov process * strategy * tactic * two-parameter optimal stopping problem

1 Introduction

Throughout this paper we consider the stochastic processes indexed by N^2 . Let $T = N^2$. The index set T is extended to its one-point compactification $T \cup \{\infty\}$ endowed with the following partial order : for all $z = (s, t), z' = (s', t') \in T$,

 $z \le z'$ if and only if $s \le s', t \le t',$ z < z' if and only if s < s', t < t', $z < \infty$ for all $z \in T$.

For i = 1, 2, let $X^i = (\Omega^i, \mathcal{F}^i, \mathcal{F}^i_t, X^i(t), P^i_x)$ be a time homogeneous Markov chain with a state space (E^i, \mathcal{B}^i) . We assume that X^1 and X^2 are mutually independent.

We define a bi-Markov process introduced in Mazziotto [8], that is, the family of a two-parameter process taking values in $E = E^1 \times E^2$

$$X(z) = (X^{1}(s), X^{2}(t)) \ z = (s, t) \in \mathbf{T}$$

on the probability space $(\Omega = \Omega^1 \times \Omega^2, \mathcal{F} = \mathcal{F}^1 \otimes \mathcal{F}^2, P_{(x,y)} = P_x^1 \otimes P_y^2, (x,y) \in E)$ endowed with the smallest two-parameter filtration $\{\mathcal{F}_z, z \in \mathbf{T}\}$ which contains $\{\mathcal{F}_s^1 \otimes \mathcal{F}_t^2, (s,t) \in \mathbf{T}\}$ and satisfies the conditions

— 35 —