ON THE ALMOST EVERYWHERE CONVERGENCE OF BOCHNER-RIESZ MEANS

OF MULTIPLE FOURIER INTEGRALS FOR RADIAL FUNCTIONS

MICHITAKA KOJIMA

ABSTRACT. Let $n \ge 2$ and $(S_*^{\delta} f)(x) = \sup_{R>0} |(S_R^{\delta} f)(x)|$, where $S_R^{\delta} f$ is the Bochner-Riesz mean of order δ of the Fourier integral for f on R^n . We show that the operator S_*^{δ} is bounded from the Lorentz space $L^{p+1}(R^n)$ into $L^{p+\infty}(R^n)$ on the critical line $\delta = n(1/p-1/2)-1/2$ for $2n/(n+2) \le p \le 2n/(n+1)$ besides p > 1 when acting on radial functions.

§1. Introduction.

Let R^n be the $n(\geq 2)$ -dimensional Euclidean space and for any $x=(x_1,\ldots,x_n)$, $y=(y_1,\ldots,y_n)$ in R^n , we denote $(x,y)=x_1y_1+\cdots+x_ny_n$ and $|x|=(x,x)^{1/2}$.

For the Fourier integral of a function $f \in L^p(\mathbb{R}^n)$ ($1 \le p \le 2$), its Bochner-Riesz mean of order $\delta \ge 0$ is defined by

(1)
$$(S_R^{\delta} f)(x) = (\sqrt{2\pi})^{-n} \int_{|y| \le R} (1 - \frac{|y|^2}{R^2})^{\delta} \hat{f}(y) e^{i(x, y)} dy,$$

where $\widehat{f}(y)$ is the Fourier transform of f, i.e.