Harmonic Foliations on a Complete Riemannian Manifold

S.D. Jung, T.H. Kang, B.H. Kim, H.K. Pak and J.S. Pak

Abstract. Let \mathcal{F} be a Riemannian foliation with finite energy on a manifold (M, g_M) with a complete bundle-like metric g_M . Assume that the Ricci curvature is non-negative and the transversal scalar curvature is non-positive. If \mathcal{F} is harmonic, then \mathcal{F} is totally geodesic.

0 Introduction

A foliation \mathcal{F} on a manifold M is *harmonic*, if the canonical projection $\pi: TM \to Q$ of the tangent bundle to the normal bundle Q = TM/L is a harmonic Q-valued 1-form ([2,3]). For this one needs the connection ∇' defined by (3.10) in Q, and a Riemannian metric g_M in M.

A rich variety of harmonic foliations were discussed in [2]. It is wellknown that \mathcal{F} is harmonic if and only if all leaves of \mathcal{F} are minimal submanifolds of M ([2]).

On the other hand, if \mathcal{F} is Riemannian, i.e., if there exists a holonomy invariant metric g_Q on Q, there is a unique metric and torsion-free connection ∇ in Q ([2]).

In 1984, F.W.Kamber and Ph.Tondeur([3]) studied the interplay of the harmonicity property with the curvature of the Riemannian metric g_M and the curvature of the connection ∇ , which is metric and trosion-free with respect to the holonomy invariant metric g_Q on Q. Namely, let \mathcal{F} be a Riemannian foliation on a closed oriented manifold M. Let g_M be a Riemannian metric on M with non-negative Ricci curvature and assume the

²⁰⁰⁰ Mathematics Subject Classification. 53C12, 57R30

Key words and phrases. Cut off function, Harmonic foliation, Totally geodesic foliation

This work is supported by Korea Research Foundation Grant(KRF-2000-042-D00007)