Transcendental entire solution of some q-difference equation

Ilham Eli and Niro Yanagihara

Abstract

We treat linear q-difference equations with polynomial coefficients, in which $q=e^{2 \pi \lambda i}, \lambda \in(0,1) \backslash \mathbb{Q}$. Supposing that there is a transcedental entire solution $f(z)$ for this equation, we will show that $f(z)$ takes any finite value infinitely often in any sector.

Keywords and phrases: linear q-difference equation, entire function, rationality and irrationality.

AMS Subject Classification: 39A13, 30D20

1 Introduction

We consider here a q-difference equation

$$
\begin{equation*}
b_{p}(z) f\left(q^{p} z\right)+\cdots+b_{0}(z) f(z)=\mathfrak{b}(z), \quad b_{j}(z), \mathfrak{b}(z) \in \mathbb{C}[z] \tag{1.1}
\end{equation*}
$$

with $b_{j}(z)=\sum_{k=0}^{B_{j}} b_{k}^{(j)} z^{k} \quad\left(b_{B_{j}}^{(j)} \neq 0\right), 0 \leq j \leq p$, in which we suppose that $|q|=1$, i.e., $q=e^{2 \pi i \lambda}$. Further we suppose that

$$
\begin{equation*}
q=e^{2 \pi i \lambda}, \quad \lambda \in(0,1) \backslash \mathbb{Q} \tag{1.2}
\end{equation*}
$$

The equation (1.1) with q in (1.2) may have transcendental entire solution. In fact, Driver et al. [2] p. 474 showed that there exists a pair $(q, A), q$ in (1.2) and $|A|=1$, such that the equation

$$
\begin{equation*}
q z f(q z)+(1-A z) f(z)=1 \tag{1.3}
\end{equation*}
$$

has a transcendental entire solution $f(z)$. See also [6].
By the way, Ramis [7] questioned whether (1.1) with q in (1.2) would have transcendental entire solution which also satisfies a linear differential equation.

Here we will consider some properties of solutions of (1.1) with q in (1.2).
First, we introduce some notations: Put $B^{*}=\max _{0 \leq j \leq p} B_{j}\left(B_{j}=\operatorname{deg}\left[b_{j}(z)\right]\right)$ and $j_{1}<\cdots<j_{\tau}$ be such that $B^{*}=B_{j_{t}}(1 \leq t \leq \tau)$ with $B_{j}<B^{*}\left(j \neq j_{t}\right)$. Write $b_{t}=b_{B^{*}}^{\left(j_{t}\right)}$ and set

$$
\begin{equation*}
\phi(z)=\sum_{t=1}^{\tau} b_{t} z^{j_{t}-j_{1}}=0 \tag{1.4}
\end{equation*}
$$

