THE GROUP GENERATED BY AUTOMORPHISMS BELONGING TO GALOIS POINTS OF THE QUARTIC SURFACE

Mitsunori KANAZAWA, Takeshi TAKAHASHI and Hisao YOSHIHARA

ABSTRACT. We consider the group G generated by automorphisms belonging to Galois points of S_8 , which is the quartic surface with the maximal number of Galois points. We obtain several exact sequences of groups, from which we see that the order of G is $2^5 3^2$. Moreover, we show that S_8 has a structure of C_4 -fiber space, where C_4 is the quartic curve with the maximal number of Galois points.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero. We fix it as the ground field of our discussion. Let V be a smooth curve or surface of degree d in the projective plane \mathbb{P}^2 or in the projective three space \mathbb{P}^3 respectively. Let K = k(V) be the rational function field of V. For a point $P \in V$, let $\pi_P : V \cdots \to W$ be a projection of V from P to a line or hyperplane W. The rational map π_P induces the extension of fields K/k(W). The structure of this extension does not depend on the choice of W, but on P, so that we write K_P instead of k(W). We have been studying the structure of this extension using geometrical methods (cf. [4], [5], [10]). The point P is called a Galois point if the extension is Galois. The number of Galois points is finitely many if $d \ge 4$ (cf. [4], [10]). Hence we denote it by $\delta(V)$. An automorphism σ of V is called the one belonging to Galois point P if σ is the automorphism induced by an element of Gal(K/K_P). It is not only an automorphism of V over W but also a projective transformation of V (cf. [10]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 14J50; Secondary 14N05. Key words and phrases. Galois point, Automorphism, Quartic surface.