Nihonkai Math. J. Vol.1(1990), 203-208

Cartan hypersurfaces and reflections

F. Tricerri and L. Vanhecke

Abstract

One gives a characterization of the Cartan hypersurfaces in spheres by means of volume-preserving local reflections.

1. Introduction and statement of the results

In this short note we will treat some geometrical properties of a special class of minimal hypersurfaces M embedded in a sphere $S^{n+1}(c)$ of curvature c. We always suppose M to be connected and compact.

We start with the definition of this class.

Definition. A Cartan hypersurface in a sphere $S^{n+1}(c)$ is a compact hypersurface with principal curvatures $-(3c)^{1/2}$, 0, $(3c)^{1/2}$ with the same multiplicity.

These hypersurfaces were discovered by E.Cartan in his work about isoparametric hypersurfaces in real space forms [2], [3]. First, he discovered the socalled classical Cartan hypersurface in $S^4(1)$. It is the only complete hypersurface, up to congruence, with three distinct constant principal curvatures. Further, it is an "algebraic" manifold defined by a polynomial of order three. It is minimally embedded and moreover, it is a homogeneous space $SO(3)/\mathbb{Z}_2 \times \mathbb{Z}_2$ which may be viewed as a tube of radius $\pi/2$ about a Veronese surface. (See also [6] for a description.) Next, E.Cartan also proved that these hypersurfaces only exist when n=3,6,12,24 and that the compact ones are always homogeneous.

Many authors studied isoparametric hypersurfaces, i.e. hypersurfaces with constant principal curvatures, in real space forms. Every family of isoparametric hypersurfaces contains a unique minimal one and the Cartan hypersurfaces are the compact ones where there are exactly three distinct principal curvatures. In the reference list we give

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 53C40, 53C25, 53C22