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Cartan hypersurfaces and reflections

F.Tricerri and L.Vanhecke

Abstract

0ne gives a characterization of the Cartan hypersurfaces in sphcres by means of
volume-preserving local reflections.

1. Introduction and statement of the results

In this short note we will treat some geometrical properties of a special class of
minimal hypersurfaces $M$ embedded in a sphere $S^{n+1}(c)$ of curvature $c$ . We always
suppose $M$ to be connected and compact.

We start with the definition of this class.

Deflnition. A Cartan hypersurface in a sphere $S^{n+1}(c)$ is a compact hypersurface
with principal $curvatures-(3c)^{1/2},0,$ $(3c)^{1/2}$ with the same multiplicity.

These hypersurfaces were discovered by E.Cartan in his work about isoparametric
hypersurfaces in real space forms [2], [3]. First, he discovered the socalled classical
Cartan hypersurface in $S^{4}(1)$ . It is the only complete hypersurface, up to congruence,
with three distinct constant principal curvatures. Ftirther, it is an “algebraic” manifold
defined by a polynomial of order three. It is minimaly embedded and moreover, it is a
homogeneous space $SO(3)/Z_{2}\times Z_{2}which$ may be viewed as a tube of radius $\pi/2$ about a
Veronese surface. (See also [6] for a description.) Next, E.Cartan also proved that these
hypersurfaces only exist when $n=3,6,12,24$ and that the compact ones are always
homogeneous.

Many authors studied isoparametric hypersurfaces, i.e. hypersurfaces with constant
principal curvatures, in real space forms. Every family of isoparametric hypersurfaces
contains a unique minimal one and the Cartan hypersurfaces are tilc compact ones
where there are exactly three distinct principal curvatures. In the reference list we give
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