Nihonkai Math. J. Vol.1(1990), 193-201

TOTALLY REAL SUBMANIFOLDS OF S⁶ SHARIEF DESHMUKH

ABSTRACT: We obtain an estimate for the index of a 3dimensional compact totally real submanifold of the nearly Kaehler six dimensional sphere S^6 .

A six dimensional unit sphere S^6 has an almost complex structure J defined by the vector cross product in the space of purely imaginary cayley numbers. This almost complex structure is not integrable and satisfies $(\overline{\nabla} J)(\overline{X}) = 0$ for any \overline{X} vector field \overline{X} on S^6 , where $\overline{\nabla}$ is the Riemannian connection on S^6 (and hence S^6 is a nearly Kaehler manifold) (cf.[2]). It is also known that there does not exist a 4-dimensional almost complex submanifold of S^6 (cf.[2]). However there are 3-dimensional totally real submanifolds of S^6 (cf.[1]). 3-dimensional totally real submanifolds of S^6 are minimal and orientable ([1]).

Let M be a 3-dimensional totally real submanifold of S⁶ with the tangent bundle TM and the normal bundle ν . We denote by the same letter g the Riemannian metric on S⁶ as well as that induced on M. The Riemannian connection $\overline{\nu}$ induces the Riemannian connection ∇ on M and the connection ∇^{\perp} in the normal bundle ν and we have the following Gauss and Weingarten formulae

This work is supported by the grant No.(Math/1409/04) of the Research Center, College of Science, King Saud University, Riyadh.

- 193 -