Certain Invariant Subspace Structure of Analytic Crossed Products II

By
Tomomi Kominato and Kichi-Suke Saito*

(Received October 27, 1986)

1. Introduction

Let M be a finite von Neumann algebra on a separable Hilbert space H. Let α be a *-automorphism of M. Suppose that there is an α -invariant faithful normal semi-finite trace ϕ of M. Let \mathfrak{L}_+ be an analytic crossed product on L^2 determined by M and α (see the definition to § 2). We have an interest in the invariant subspace structure of L^2 with respect to \mathfrak{L}_+ . In [3, 5], McAsey introduced the notion of canonical models for invariant subspaces of L^2 . That is, a family of left-pure, left-full, left-invairant subspaces $\{\mathfrak{M}_i\}_{i\in I}$ constitutes a complete set of canonical models for all invariant subspaces of L^2 in case (a) for no two distinct indices i and j, $P\mathfrak{m}_i$ is unitary equivalent to $P\mathfrak{m}_j$ by a unitary operator in $\Re(=\Re')$; and (b) for every left-pure, left-invariant subspace of L^2 , there is an *i* in I and a partial isometry V in \Re such that $VP \mathfrak{M}_i V^* = P \mathfrak{M}$, so that $\mathfrak{M} = V \mathfrak{M}_i$. McAsey found the canonical model in case that $M = \ell^{\infty}(X)$, where X is a finite set with elements $t_0, t_1, \ldots, t_{K-1}$, and the automorphism of M induced by a permutation of X. Further, in [9, 18, 19], we studied the canonical models of invariant subspaces in case that ϕ is a finite trace. On the other hand, in [2], we studied the canonical models when M $=L^{\infty}(X,\mu), \mu(X)=\infty$ and α is an ergodic automorphism of M. That is, we constructed a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 with the multiplicity function m of \mathfrak{M}_{∞} which is $m(t) = \infty$ for almost all t in X. Thus, for every left-pure, left-invariant subspace \mathfrak{M} of L^2 , there exists a partial isometry V in $\mathfrak{R}(=\mathfrak{L}')$ such that $\mathfrak{M}=V\mathfrak{M}_{\infty}$. That is, the canonical model in this case is the singletone $\{\mathfrak{M}_{\infty}\}$.

Our aim in this note is to extend the results in [2]. That is, suppose that $\phi(1) = \infty$ and that α is ergodic on the center Z of M. Then we will construct a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 with the multiplicity function m of \mathfrak{M}_{∞} which is $m(t) = \infty$ for almost everywhere t in X. Therefore, we prove that for every left-pure, left-invariant subspace \mathfrak{M} of L^2 , there exists a partial isometry V in $\mathfrak{R}(=\mathfrak{L}')$ such that $\mathfrak{M} = V\mathfrak{M}_{\infty}$.

^{*} The second author was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education.