On the linear maps which are multiplicative on complex *-algebras

By

Shun-ichi TOMITA*

(Received November 10, 1976)

1. Introduction

A Jordan *-homomorphism which satisfies the Cauchy-Schwarz inequality is *-homomorphic (E. Størmer [4], M. D. Choi [1] and T. W. Palmer [3]). In this paper, we shall give an elementary proof of this theorem under some weaker assumptions than theirs (Corollary 4). T. W. Palmer [3; Corollary 1] presents a characterization theorem of *-homomorphisms from U*-algebras. We shall give an elementary proof of this theorem (Corollary 6). Finally, we shall show that the linear functional on a Banach algebra which does not take the value 1 on the quasi-invertible elements is multiplicative.

2. Preliminaries

Let *A* be a *-algebra. We use the following notations:

 $A_H = \{h \in A : h^* = h \text{ (i. e. Hermitian element of } A)\}.$

$$A_{+} = \Big\{ \sum_{j=1}^{n} a_{j}^{*} a_{j} : a_{j} \in A, n = 1, 2, \ldots \Big\}.$$

For $h, k \in A_H$ we write $h \leq k$ if $k-h \in A_+$.

 $A_{qI} = \{x \in A: \text{ quasi-invertible element}\}.$

 $A_{qU} = \{ u \in A : u^*u = uu^* = u + u^* \text{ (i. e. quasi-unitary element)} \}.$

U*-algebra, introduced by T. W. Palmer, is a *-algebra which is the linear span of its quasi-unitary elements. Let A and B be *-algebras. A Jordan *-homomorphism ϕ of A into B is a linear map such that

$$\phi(xy+yx) = \phi(x) \phi(y) + \phi(y) \phi(x) \quad \text{and} \quad \phi(x^*) = \phi(x)^*$$
for all $x, y \in A$.

All algebras considered in this paper are those over the complex field C.

* Niigata University.