The second dual of a tensor product of C^{*}-algebras III

By
Tadashi Huruya

(Received May 20, 1975)

1. Introduction

Let D be a C*-algebra, and let D^{*} denote its dual and $D^{* *}$ its second dual. Let π_{D} be the universal representation of D on the Hilbert space H_{D}, then $D^{* *}$ can be identified with the weak closure of $\pi_{D}(D)$.

Let A and B be C^{*}-algebras, and let $A \otimes B$ denote the C^{*}-tensor product of A and B and $A^{* *} \otimes B^{* *}$ the W^{*}-tensor product of $A^{* *}$ and $B^{* *}$. If $\pi_{A} \otimes \pi_{B}$ has a normal extension to $(A \otimes B)^{* *}$ which is a *-isomorphism onto $A^{* *} \otimes B^{* *}$, we shall say that $(A \otimes B)^{* *}$ is canonically ${ }^{\alpha}$-isomorphic to $A^{* *} \otimes B^{* *}$. It is known that $(A \otimes B)^{* *}$ is canonically ${ }^{\alpha}{ }^{*}$-isomorphic to $A^{* *} \otimes B^{* *}$ if and only if $(A \otimes B)^{*}=A^{*} \otimes B^{*}$, where $A^{*} \otimes B^{*}$ denotes the uniform closure of the algebraic tensor product of A^{*} and $\stackrel{\alpha^{\prime}}{B^{*}}$ in $(A \otimes B)^{*} \stackrel{\alpha^{\alpha}}{([2], ~[4]) . ~}$

We are interested in C^{*}-algebras A having the property:
($\left.^{*}\right)\left(\underset{\alpha}{\underset{\alpha}{~} B)^{* *}}\right.$ is canonically ${ }^{*}$-isomorphic to $A^{* *} \otimes B^{* *}$ for an arbitrary C*algebra B.

We shall present a characterization of commutative C^{*}-algebras having the property (*).

The author would like to express his hearty thanks to Professor J. Tomiyama for his many valuable suggestions.

2. Theorem

We first consider a commutative C^{*}-algebra A such that $(A \otimes A)^{* *}$ is not canonically *-isomorphic to $A^{* *} \otimes A^{* *}$.

Let X be a locally compact Hausdorff space, and let $C_{0}(X)$ be the C^{*}-algebra of all complex-valued continuous functions on X, which vanish at infinity. Let $M(X)$ be the set of all complex regular Borel measures on X and $M(X)^{+}$the set of all positive measures of $M(X)$. From the Riesz-Markov representation theorem we can identify $M(X)$ with $C_{0}(X)^{*}$.

Throughout this paper, χ_{E} denotes the characteristic function of a set E, also $\boldsymbol{\delta}_{\boldsymbol{t}}$

