The second dual of a tensor product of C*-algebras III

By

Tadashi HURUYA

(Received May 20, 1975)

1. Introduction

Let *D* be a C*-algebra, and let *D** denote its dual and *D*** its second dual. Let π_D be the universal representation of *D* on the Hilbert space H_D , then *D*** can be identified with the weak closure of $\pi_D(D)$.

Let A and B be C*-algebras, and let $A \otimes B$ denote the C*-tensor product of A and B and $A^{**} \otimes B^{**}$ the W*-tensor product of A^{**} and B^{**} . If $\pi_A \otimes \pi_B$ has a normal extension to $(A \otimes B)^{**}$ which is a *-isomorphism onto $A^{**} \otimes B^{**}$, we shall say that $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$. It is known that $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$ if and only if $(A \otimes B)^{*} = A^{*} \otimes B^{*}$, where $A^{*} \otimes B^{*}$ denotes the uniform closure of the algebraic tensor product of A^{*} and B^{**} in $(A \otimes B)^{*}$ ([2], [4]).

We are interested in C*-algebras A having the property:

(*) $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$ for an arbitrary C*algebra B.

We shall present a characterization of commutative C*-algebras having the property (*).

The author would like to express his hearty thanks to Professor J. Tomiyama for his many valuable suggestions.

2. Theorem

We first consider a commutative C*-algebra A such that $(A \bigotimes A)^{**}$ is not canonically *-isomorphic to $A^{**} \otimes A^{**}$.

Let X be a locally compact Hausdorff space, and let $C_0(X)$ be the C*-algebra of all complex-valued continuous functions on X, which vanish at infinity. Let M(X) be the set of all complex regular Borel measures on X and $M(X)^+$ the set of all positive measures of M(X). From the Riesz-Markov representation theorem we can identify M(X) with $C_0(X)^*$.

Throughout this paper, χ_E denotes the characteristic function of a set E, also δ_t