On a Galton-Watson process with state-dependent immigration

By

Masamichi SATO

(Received October 31, 1974)

1. Introduction

Consider a Galton-Watson process in which immigration is allowed in a generation if the number of the previous generation is smaller than or equal to i_0 , where i_0 is a fixed positive integer.

Denote the size of the *n*-th generation by X_n , and we set up this process as follows;

1) $A(x) = \sum_{j=0}^{\infty} a_j x^j$, $(|x| \le 1)$, is the probability generating function of the offspring distribution;

2) $B_k(x) = \sum_{j=0}^{\infty} b_{kj} x^j$, $(|x| \le 1, 0 \le k \le i_0)$, is the probability generating function of the immigrants distribution, where b_{kj} is the probability that j immigrants enter in a generation when the number of the previous generation is equal to k;

3) transition probability p_{ij} is given by

$$p_{ij} \equiv P\{X_{n+1} = j | X_n = i\} = a_j^{(i^*)}, \quad i \ge i_0 + 1,$$
$$= \sum_{k=0}^j b_{ik} \cdot a_{j-k}^{(i^*)}, \quad 0 \le i \le i_0,$$

where $a_j^{(i^*)}$ is the *j*-th term in the *i*-th fold convolution of the sequence $\{a_j\}$. The state-dependent immigration have been studied by Pakes (1971) [9], Foster (1971) [4]

and Nakagawa-Sato (1974) [8]. The setting up of Pakes or Foster is the case that $B_0(x) = B(x)$ and $B_k(x) = 1$ ($k = 1, 2, \dots, i_0$), and Nakagawa-Sato's is the case that $B_k(x) = B(x)$ for all k, in our process.

From now on it will be assumed that

1.
$$0 < a_0, a_0 + a_1, b_{k_0} < 1, (k = 0, 1, \dots, i_0)$$

2.
$$\alpha = A'(1-) < \infty$$
 and $\beta_k = B_k'(1-) \le \infty$, $(k = 0, 1, \dots, i_0)$.

(1)