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Introduction

F.P. Peterson has generalized the Borsuk’s cohomotopy groups to the sets of
homotopy classes of maps of a CW-pair into a pair of spaces in [2]. ‘

In this paper, we intend to generalize them to the sets of the homotopy classes
of maps of a CW-triad into a triad of spaces, and to study their two aspects, i.e.,
the aspect as a generalization of homotopy groups and that of cohomotopy groups.

We denote by n(K;L,M|X;Y,Z) the set of homotopy classes of maps of a
CW-triad (K; L, M) with a base point % into a triad (X; Y, Z) with a base point z,.

We shall give a group structure to n(K; L, M| X; Y, Z) under some conditions
in 81, get two kinds of exact sequences in §2, and consider of fibring in §3.

In this paper the notations S and C are used as follows; the cone CX of X is
the space obtained from XxI by shrinking (Xx1)~(x,xI) to a point x,, the sus-
pension SX is that obtained by shrinking (Xx0)~(x,xI)~(Xx1) to a point x,,
and for a map f: X—Y, Cf:CX—CY and Sf:SX—SY are naturally defined. We
note that C’'CX and CSX are homeomorphic, where C'CX is the cone of CX.

8§1. Group structure

Let f¢:2(K; L', M' |\ X;Y,Z)—>n(K; L,M| X; Y, Z) be induced by a map f:(K;
L, M)->(K;L''M), and ¢3:n(K; L, M| X; Y, Z)—>n(K; L, M| X"; Y, Z') by a map
¢:(X;Y,Z)~>(X"; Y, Z') as usual.
Let Sy:n(K; L, M| X; Y, Z)-»n(SK; SL, SM | SX; SY, SZ) be the function induced
by the suspension as in [6]. Then by Theorem 5.1 of [6], we have
THEOREM 1.1. Let X, Y and Z be (n—1), (I—1) and (m —1)-connected respectively,
and assume that dim K=<2n—2, dim L <2l—-2 and dim M<2m—2. Then S; is one
to one and natural with respect to maps f and ¢.
Let (X; Y, Z)%:L > denote a function space of maps of (K; L, M) into (X; Y, Z)
with the compact-open topology. Then by Theorem 6.1 of [1] we obtain
THEOREM 1.2. There is a function A:7,(X; 7Y, Z)‘K LMy 5 n(S"K; STL,S"™M | X; Y, Z)
which is one to one and natural with respect to maps f and ¢, where S™=S8(S"7).
Using these theorems we get



