AN ESTIMATION OF QUASI-ARITHMETIC MEAN BY ARITHMETIC MEAN AND ITS APPLICATIONS

MASARU TOMINAGA

Abstract

The quasi-arithmetic mean inequality says that if f is an increasing strictly convex function on an interval I, then $f^{-1}(\langle f(A) x, x\rangle) \geq\langle A x, x\rangle$ for all unit vectors x in a Hilbert space H and a selfadjoint operator A on H, whose spectrum is contained in I. In this paper, we consider reverse inequalities of the quasi-arithmetic mean inequality. For each $\lambda>0$ we observe an upper bound of a difference $$
f^{-1}(\langle f(A) x, x\rangle)-\lambda\langle A x, x\rangle .
$$

We find a condition on vectors x which attain the optimal bounds. Replacing a given function $f(t)$ by a power, the logarithmic and the exponential function, we show these reverse quasi-arithmetic mean inequalities and equality conditions, in which the obtained constants are expressed by a generalized Kantorovich constant, the Specht ratio and the logarithmic mean.

1. Introduction

Let f be a strictly increasing continuous function on an interval I. Then

$$
\begin{equation*}
f^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right) \tag{1.1}
\end{equation*}
$$

is called the quasi-arithmetic mean of $a=\left(a_{1}, \ldots, a_{n}\right) \in I^{n}\left(\subset \mathbb{R}^{n}\right)$ by f (cf. [15]). Typical examples are arithmetic, geometric and harmonic means which correspond to functions $f(t)=t, \log t$ and $-\frac{1}{t}$, respectively.

Throughout this paper, an operator means a bounded linear operator on a Hilbert space H. For each unit vector $x \in H$, we consider

$$
\begin{equation*}
f^{-1}(\langle f(A) x, x\rangle) \tag{1.2}
\end{equation*}
$$

for all selfadjoint operators A whose spectra are contained in I, as an operator version of the quasi-arithmetic mean (1.1). Incidentally, $\langle A x, x\rangle$ is regarded as the arithmetic mean. Indeed, (1.1) is obtained by putting $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ and $x=\frac{1}{\sqrt{n}}\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$ in (1.2), and obviously $\langle A x, x\rangle=\frac{1}{n} \sum a_{i}$. If we choose the logarithmic function $f(t)=\log t$, then its quasi-arithmetic mean $\exp \langle(\log A) x, x\rangle$ for a fixed unit

[^0]
[^0]: 2000 Mathematics Subject Classification. 47A63.
 Key words and phrases. quasi-arithmetic mean inequality, Specht ratio, logarithmic mean, generalized Kantorovich constant, determinant.

