SIMULTANEOUS EXTENSIONS OF SELBERG INEQUALITY AND HEINZ-KATO-FURUTA INEQUALITY

MASATOSHI FUJII* AND RITSUO NAKAMOTO**

ABSTRACT. Based on Heinz-Kato-Furuta inequality, we gave an extension of recent Lin's improvement of a generalized Schwarz inequality in our previous note. We present a simultaneous extension of Selberg and Heinz-Kato-Furuta inequalities. As a consequence, we can sharpen the Heinz-Kato-Furuta inequality and further extensions are obtained by Furuta inequality.

1. Introduction.

Throughout this note, an operator means a bounded linear one acting on a Hilbert space. An operator A is positive, denoted by $A \ge 0$, if $(Ax, x) \ge 0$ for all $x \in H$. We first cite the Heinz-Kato-Furuta inequality, [8] and also [7]:

The Heinz-Kato-Furuta inequality. Let A and B be positive operators on H. If an operator T on H satisfies $T^*T \leq A^2$ and $TT^* \leq B^2$, then

(1)
$$|(T|T|^{\alpha+\beta-1}x,y)| \le ||A^{\alpha}x|| ||B^{\beta}y||$$

for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \ge 1$ and $x, y \in H$.

We here remark that the Heinz-Kato inequality is just the case $\alpha + \beta = 1$ in above. Based on (1), we have the following extension of a recent Lin's refinement [11] of the generalized Schwarz inequality. Let T = U|T| be the polar decomposition of an operator T on H in the below.

Theorem A. [2] Let T be an operator on H and $0 \neq y \in H$. For $z \in H$ satisfying $T|T|^{\alpha+\beta-1}z \neq 0$ and $(T|T|^{\alpha+\beta-1}z, y) = 0$,

(2)
$$|(T|T|^{\alpha+\beta-1}x,y)|^2 + \frac{|(|T|^{2\alpha}x,z)|^2(|T^*|^{2\beta}y,y)}{(|T|^{2\alpha}z,z)} \le (|T|^{2\alpha}x,x)(|T^*|^{2\beta}y,y)$$

for all $\alpha, \beta \geq 0$ with $\alpha + \beta \geq 1$ and $x \in H$.

It is easily seen that Lin's theorem [11; Theorem 1] is the case $\alpha + \beta = 1$ in Theorem A. As a consequence, we have the following improvement of the Heinz-Kato-Furuta inequality via the Löwner-Heinz inequality, i.e., $A \ge B \ge 0$ implies $A^{\alpha} \ge B^{\alpha}$ for $\alpha \in [0, 1]$, see [12]:

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A30, 47A63.

Key words and phrases. Generalized Schwarz inequality, Heinz-Kato-Furuta inequality, Furuta inequality and Selberg inequality.