A NEW CHARACTERIZATION OF HOMOGENEOUS REAL HYPERSURFACES IN COMPLEX SPACE FORMS

JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give a new characterizations of homogeneous real hypersurfaces M in complex space forms $M_n(c)$ when the covariant derivative and the Lie derivative of the Ricci tensor of M are equal to each other along the direction of the structure vector ξ .

1. Introduction

A complex *n*-dimensional Kähler manifold of constant holomorphic sectional curvature c is called a *complex space form*, which is denoted by $M_n(c)$. The complete and simply connected complex space form is isometric to a complex projective space P_nC , a complex Euclidean space C^n , or a complex hyperbolic space H_nC according as c > 0, c = 0 or c < 0 respectively. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by (ϕ, ξ, η, g) .

Now, there exist many studies about real hypersurfaces of $M_n(c)$, $c \neq 0$. One of the first researches is the classification of homogeneous real hypersurfaces of a complex projective space P_nC by Takagi [14], who showed that these hypersurfaces of P_nC could be divided into six types which are said to be of type A_1, A_2, B, C, D and E. This result is generalized by many authors (See [3], [5], [8], [9], [11] and [13]).

On the other hand, real hypersurfaces of H_nC have been also investigated by many authors (See [1], [6], [10] and [12]) from different points of view. In particular, Berndt [1] proved the following.

Theorem A. Let M be a real hypersurface of H_nC , $n \ge 3$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the followings :

- (A_0) a horosphere in H_nC , that is, a Montiel tube,
- (A_1) a tube over a totally geodesic hyperplane H_kC (k = 0 or n 1),
- (A₂) a tube over a totally geodesic H_kC $(1 \leq k \leq n-2)$,

¹⁹⁹¹ AMS Subject Classifications : Primary 53C40; Secondary 53C15.

Key words and phrases : Real hypersurface, Complex space form, Ricci tensor, Lie derivative, Covariant derivative, Real hypersurfaces of type A.

This research was supported by the grants from Basic Science Research Program, BSRI-98-1404, Ministry of the Education, 1998 and partly by TGRC-KOSEF.