Conjugacy classes of zero entropy automorphisms

on free group factors

Naohito Tanaka

1. Introduction. The entropy $H(\theta)$ of a *-automorphism θ on a von Neumann algebra M is defined by Connes - Størmer [4] as an extended version of classical one. The notion of entropy is conjugacy invariant, that is, $H(\theta) = H(\alpha^{-1}\theta\alpha)$ for an automorphism α of M.

Besson[2] gives an example of an uncountable family of automorphisms on the hyperfinite II₁ factor R which have zero entropy but are not pairwize conjugate. An interesting example of II₁-factor which is not hyperfinite is the group von Neumann algebra $L(F_n)$ of the free group F_n on n generators $(n \ge 2)$.

The purpose of this paper is to give an alternative version of Besson's result to free group factors. That is, we show:

Theorem. There exists an uncountable family of automorphisms on $L(F_n)$ which have entropy zero but are pairwize non conjugate.

The author would like to thank the referee for many valuable comments and pointing out a mistake in the first virsion of this paper.

2. Automorphisms of free group factors. Let G be a countable infinite group and $l^2(G)$ the Hilbert space of all square summable functions on G. For each g in G, let u(g) be the unitary representation of G to $l^2(G)$ defined by

$$(u(g)\xi)(h) = \xi(g^{-1}h)$$
 $(\xi \in l^2(G), h \in G).$

The von Neumann algebra on $l^2(G)$ generated by $\{u(g); g \in G\}$ is called the left von Neumann algebra of G and denoted by L(G). It is well known that L(G) is factor if and only if G is an ICC group, that is, every conjugacy class $C_g = \{hgh^{-1}; h \in G\}$ is infinite, except the trivial $\{1\}$. Let $\{\delta(g)\}_{g \in G}$ be an othonomal basis in $l^2(G)$ given by

$$(\delta(g))(h) = \begin{cases} 1 & h = g \\ 0 & \text{otherwise} \end{cases}$$
 $(g \in G)$.

The functional τ on L(G) defined by

$$\tau(x) = (x\delta(e)|\delta(e))$$
 $(x \in R(G), e \text{ is the unit of } G),$